4.8 KiB
4.8 KiB
RunPod Deployment Guide
Quick Start (Recommended)
1. Create RunPod Instance
- Template:
runpod/pytorch:2.4.0-py3.11-cuda12.4.1-devel-ubuntu22.04 - GPU: NVIDIA A40 (48GB VRAM)
- Storage: 50GB+ (for videos and models)
- Persistent Storage: Recommended for model caching
2. Connect and Setup
# After SSH/Terminal access
cd /workspace
# Clone your repository
git clone https://github.com/YOUR_USERNAME/sam2e.git
cd sam2e
# Run setup script (already executable in git)
./runpod_setup.sh
# Install SAM2 separately (not on PyPI)
pip install git+https://github.com/facebookresearch/segment-anything-2.git
3. Upload Your Video
# Option 1: wget from URL
wget -O /workspace/data/myvideo.mp4 "https://your-video-url.com/video.mp4"
# Option 2: Use RunPod's file browser
# Upload to /workspace/data/
# Option 3: rclone from cloud storage
rclone copy remote:path/to/video.mp4 /workspace/data/
4. Configure and Run
# Use RunPod-optimized config
cp config_runpod.yaml config.yaml
# Edit video path
nano config.yaml # Update video_path
# Run processing
vr180-matting config.yaml
Advanced Docker Deployment
Option 1: Pre-built Docker Image
# Build and push to Docker Hub (do this locally first)
docker build -t yourusername/vr180-matting:latest .
docker push yourusername/vr180-matting:latest
# On RunPod, use your image as template
Option 2: Build on RunPod
cd /workspace/sam2e
docker build -t vr180-matting .
docker run --gpus all -v /workspace/data:/app/data -v /workspace/output:/app/output -it vr180-matting
Performance Tips for A40
Optimal Settings
processing:
scale_factor: 0.75 # A40 can handle higher resolution
chunk_size: 0 # Let it auto-calculate for 48GB
detection:
model: "yolov8m" # or yolov8l for better accuracy
matting:
memory_offload: false # Plenty of VRAM
fp16: true # Still use FP16 for speed
Expected Performance
- 50% scale: ~10-15 FPS processing
- 75% scale: ~6-10 FPS processing
- 100% scale: ~4-6 FPS processing
Memory Monitoring
# Watch GPU usage while processing
watch -n 1 nvidia-smi
# Or in another terminal
nvidia-smi dmon -s um
Batch Processing Script
Create batch_process.py for multiple videos:
import os
import sys
from pathlib import Path
from vr180_matting.config import VR180Config
from vr180_matting.vr180_processor import VR180Processor
# Directory setup
input_dir = Path("/workspace/data/videos")
output_dir = Path("/workspace/output")
base_config = "config_runpod.yaml"
for video_file in input_dir.glob("*.mp4"):
print(f"Processing: {video_file.name}")
# Load base config
config = VR180Config.from_yaml(base_config)
# Update paths
config.input.video_path = str(video_file)
config.output.path = str(output_dir / f"matted_{video_file.stem}.mp4")
# Process
processor = VR180Processor(config)
processor.process_video()
print(f"Completed: {video_file.name}\n")
Cost Optimization
RunPod Spot Instances
- A40 spot: ~$0.44/hour vs $0.79/hour on-demand
- Perfect for batch processing
- Add persistence: $0.10/GB/month for model storage
Processing Time Estimates
- 30s clip @ 50% scale: ~10 minutes = ~$0.07
- 1 hour video @ 50% scale: ~12 hours = ~$5.28
- 1 hour video @ 25% scale: ~6 hours = ~$2.64
Auto-shutdown Script
# Add to end of processing script
echo "Processing complete, shutting down in 60 seconds..."
sleep 60
runpodctl stop instance
Troubleshooting
SAM2 Model Download Issues
# Manual download
cd /workspace/sam2e/models
wget https://dl.fbaipublicfiles.com/segment_anything_2/sam2_hiera_large.pt
CUDA Version Mismatch
# Check CUDA version
nvcc --version
python -c "import torch; print(torch.version.cuda)"
# Reinstall PyTorch if needed
pip install torch torchvision --index-url https://download.pytorch.org/whl/cu121
Out of Memory on A40
# Unlikely, but if it happens:
processing:
scale_factor: 0.25
chunk_size: 300
matting:
memory_offload: true
Monitoring Dashboard
Create monitor.py for real-time stats:
import psutil
import GPUtil
import time
while True:
# GPU stats
gpus = GPUtil.getGPUs()
for gpu in gpus:
print(f"GPU: {gpu.memoryUsed}MB / {gpu.memoryTotal}MB ({gpu.memoryUtil*100:.1f}%)")
# CPU/RAM stats
print(f"RAM: {psutil.virtual_memory().percent}%")
print(f"CPU: {psutil.cpu_percent()}%")
print("-" * 40)
time.sleep(2)
Quick Commands Reference
# Test on short clip
vr180-matting config.yaml --dry-run
# Process with monitoring
vr180-matting config.yaml --verbose
# Override settings
vr180-matting config.yaml --scale 0.25 --format greenscreen
# Generate config
vr180-matting --generate-config my_config.yaml