Files
test2/spec.md
2025-07-26 07:23:50 -07:00

162 lines
5.9 KiB
Markdown

# VR180 Human Matting Proof of Concept - Det-SAM2 Approach
## Project Overview
A proof-of-concept implementation to test the feasibility of using Det-SAM2 for automated human matting on VR180 3D side-by-side equirectangular video. The system will process a 30-second test clip to evaluate quality, performance, and resource requirements on local RTX 3080 hardware, with design considerations for cloud GPU scaling.
## Input Specifications
- **Format**: VR180 3D side-by-side equirectangular video
- **Resolution**: 6144x3072 (3072x3072 per eye)
- **Test Duration**: 30 seconds
- **Layout**: Left eye (0-3071px), Right eye (3072-6143px)
## Core Functionality
### Automatic Person Detection
- **Method**: YOLOv8 integration with Det-SAM2
- **Detection**: Automatic bounding box placement on all humans
- **Minimal Manual Input**: Fully automated pipeline with no point selection required
### Processing Strategy
- **Primary Approach**: Process both eyes using disparity mapping optimization
- **Fallback**: Independent processing per eye if disparity mapping proves complex
- **Chunking**: Adaptive segmentation (full 30s clip preferred, fallback to smaller chunks if VRAM limited)
### Scaling and Quality Options
- **Resolution Scaling**: 25%, 50%, or 100% processing resolution
- **Mask Upscaling**: AI-based upscaling to full resolution for final output
- **Quality vs Performance**: Configurable tradeoffs for local vs cloud processing
## Configuration System
### YAML/TOML Configuration File
```yaml
input:
video_path: "path/to/input.mp4"
processing:
scale_factor: 0.5 # 0.25, 0.5, 1.0
chunk_size: 900 # frames, 0 for full video
overlap_frames: 60 # for chunked processing
detection:
confidence_threshold: 0.7
model: "yolov8n" # yolov8n, yolov8s, yolov8m
matting:
use_disparity_mapping: true
memory_offload: true
fp16: true
output:
path: "path/to/output/"
format: "alpha" # "alpha" or "greenscreen"
background_color: [0, 255, 0] # for greenscreen
maintain_sbs: true # keep side-by-side format
hardware:
device: "cuda"
max_vram_gb: 10 # RTX 3080 limit
```
## Technical Implementation
### Memory Optimization (Det-SAM2 Enhancements)
- **CPU Offloading**: `offload_video_to_cpu=True`
- **FP16 Storage**: Reduce memory usage by ~50%
- **Frame Release**: `release_old_frames()` for constant VRAM usage
- **Adaptive Chunking**: Automatic chunk size based on available VRAM
### VR180-Specific Optimizations
- **Stereo Processing**: Leverage disparity mapping for efficiency
- **Cross-Eye Validation**: Ensure consistency between left/right views
- **Edge Refinement**: Multi-resolution processing for clean matting boundaries
### Output Options
- **Alpha Channel**: Transparent PNG sequence or video with alpha
- **Green Screen**: Configurable background color for traditional keying
- **Format Preservation**: Maintain original SBS layout or output separate eyes
## Performance Targets
### Local RTX 3080 (10GB VRAM)
- **25% Scale**: ~5-8 FPS processing, ~6 minutes for 30s clip
- **50% Scale**: ~3-5 FPS processing, ~10 minutes for 30s clip
- **100% Scale**: Chunked processing required, ~15-20 minutes for 30s clip
### Cloud GPU Scaling (Future)
- **Design Considerations**: Docker containerization ready
- **Provider Agnostic**: Compatible with RunPod, Vast.ai, etc.
- **Batch Processing**: Queue-based job distribution
- **Cost Estimation**: Target $0.10-0.50 per 30s clip processing
## Quality Assessment Features
### Automated Quality Metrics
- **Edge Consistency**: Measure aliasing and stair-stepping
- **Temporal Stability**: Frame-to-frame consistency scoring
- **Stereo Alignment**: Left/right eye correspondence validation
### Debug/Analysis Outputs
- **Detection Visualization**: Bounding boxes overlaid on frames
- **Confidence Maps**: Per-pixel matting confidence scores
- **Processing Stats**: VRAM usage, FPS, chunk information
## Deliverables
### Phase 1: Core Implementation
1. **Det-SAM2 Integration**: Automatic detection pipeline
2. **VRAM Optimization**: Memory management for RTX 3080
3. **Basic Matting**: Single-resolution processing
4. **Configuration System**: YAML-based parameter control
### Phase 2: VR180 Optimization
1. **Disparity Processing**: Stereo-aware matting
2. **Multi-Resolution**: Scaling and upsampling pipeline
3. **Quality Assessment**: Automated metrics and visualization
4. **Edge Refinement**: Anti-aliasing and boundary smoothing
### Phase 3: Production Ready
1. **Cloud GPU Support**: Docker containerization
2. **Batch Processing**: Multiple video queue system
3. **Performance Profiling**: Detailed resource usage analytics
4. **Quality Validation**: Comprehensive testing suite
## Success Criteria
### Technical Feasibility
- [ ] Process 30s VR180 clip without manual intervention
- [ ] Maintain <10GB VRAM usage on RTX 3080
- [ ] Achieve acceptable matting quality at 50% scale
- [ ] Complete processing in <15 minutes locally
### Quality Benchmarks
- [ ] Clean edges with minimal artifacts
- [ ] Temporal consistency across frames
- [ ] Stereo alignment between left/right eyes
- [ ] Usable results for green screen compositing
### Scalability Validation
- [ ] Configuration-driven parameter control
- [ ] Clear performance vs quality tradeoffs identified
- [ ] Docker deployment pathway established
- [ ] Cost/benefit analysis for cloud GPU usage
## Risk Mitigation
### VRAM Limitations
- **Fallback**: Automatic chunking with overlap processing
- **Monitoring**: Real-time VRAM usage tracking
- **Graceful Degradation**: Quality reduction before failure
### Quality Issues
- **Validation Pipeline**: Automated quality assessment
- **Manual Override**: Optional bounding box adjustment
- **Fallback Methods**: Integration points for RVM if needed
### Performance Bottlenecks
- **Profiling**: Detailed timing analysis per component
- **Optimization**: Identify CPU vs GPU bound operations
- **Scaling Strategy**: Clear upgrade path to cloud GPUs