Files
test2/RUNPOD_DEPLOYMENT.md
2025-07-26 07:35:44 -07:00

216 lines
4.8 KiB
Markdown

# RunPod Deployment Guide
## Quick Start (Recommended)
### 1. Create RunPod Instance
- **Template**: `runpod/pytorch:2.4.0-py3.11-cuda12.4.1-devel-ubuntu22.04`
- **GPU**: NVIDIA A40 (48GB VRAM)
- **Storage**: 50GB+ (for videos and models)
- **Persistent Storage**: Recommended for model caching
### 2. Connect and Setup
```bash
# After SSH/Terminal access
cd /workspace
# Clone your repository
git clone https://github.com/YOUR_USERNAME/sam2e.git
cd sam2e
# Make setup script executable and run
chmod +x runpod_setup.sh
./runpod_setup.sh
# Install SAM2 separately (not on PyPI)
pip install git+https://github.com/facebookresearch/segment-anything-2.git
```
### 3. Upload Your Video
```bash
# Option 1: wget from URL
wget -O /workspace/data/myvideo.mp4 "https://your-video-url.com/video.mp4"
# Option 2: Use RunPod's file browser
# Upload to /workspace/data/
# Option 3: rclone from cloud storage
rclone copy remote:path/to/video.mp4 /workspace/data/
```
### 4. Configure and Run
```bash
# Use RunPod-optimized config
cp config_runpod.yaml config.yaml
# Edit video path
nano config.yaml # Update video_path
# Run processing
vr180-matting config.yaml
```
## Advanced Docker Deployment
### Option 1: Pre-built Docker Image
```bash
# Build and push to Docker Hub (do this locally first)
docker build -t yourusername/vr180-matting:latest .
docker push yourusername/vr180-matting:latest
# On RunPod, use your image as template
```
### Option 2: Build on RunPod
```bash
cd /workspace/sam2e
docker build -t vr180-matting .
docker run --gpus all -v /workspace/data:/app/data -v /workspace/output:/app/output -it vr180-matting
```
## Performance Tips for A40
### Optimal Settings
```yaml
processing:
scale_factor: 0.75 # A40 can handle higher resolution
chunk_size: 0 # Let it auto-calculate for 48GB
detection:
model: "yolov8m" # or yolov8l for better accuracy
matting:
memory_offload: false # Plenty of VRAM
fp16: true # Still use FP16 for speed
```
### Expected Performance
- **50% scale**: ~10-15 FPS processing
- **75% scale**: ~6-10 FPS processing
- **100% scale**: ~4-6 FPS processing
### Memory Monitoring
```bash
# Watch GPU usage while processing
watch -n 1 nvidia-smi
# Or in another terminal
nvidia-smi dmon -s um
```
## Batch Processing Script
Create `batch_process.py` for multiple videos:
```python
import os
import sys
from pathlib import Path
from vr180_matting.config import VR180Config
from vr180_matting.vr180_processor import VR180Processor
# Directory setup
input_dir = Path("/workspace/data/videos")
output_dir = Path("/workspace/output")
base_config = "config_runpod.yaml"
for video_file in input_dir.glob("*.mp4"):
print(f"Processing: {video_file.name}")
# Load base config
config = VR180Config.from_yaml(base_config)
# Update paths
config.input.video_path = str(video_file)
config.output.path = str(output_dir / f"matted_{video_file.stem}.mp4")
# Process
processor = VR180Processor(config)
processor.process_video()
print(f"Completed: {video_file.name}\n")
```
## Cost Optimization
### RunPod Spot Instances
- A40 spot: ~$0.44/hour vs $0.79/hour on-demand
- Perfect for batch processing
- Add persistence: $0.10/GB/month for model storage
### Processing Time Estimates
- 30s clip @ 50% scale: ~10 minutes = ~$0.07
- 1 hour video @ 50% scale: ~12 hours = ~$5.28
- 1 hour video @ 25% scale: ~6 hours = ~$2.64
### Auto-shutdown Script
```bash
# Add to end of processing script
echo "Processing complete, shutting down in 60 seconds..."
sleep 60
runpodctl stop instance
```
## Troubleshooting
### SAM2 Model Download Issues
```bash
# Manual download
cd /workspace/sam2e/models
wget https://dl.fbaipublicfiles.com/segment_anything_2/sam2_hiera_large.pt
```
### CUDA Version Mismatch
```bash
# Check CUDA version
nvcc --version
python -c "import torch; print(torch.version.cuda)"
# Reinstall PyTorch if needed
pip install torch torchvision --index-url https://download.pytorch.org/whl/cu121
```
### Out of Memory on A40
```yaml
# Unlikely, but if it happens:
processing:
scale_factor: 0.25
chunk_size: 300
matting:
memory_offload: true
```
## Monitoring Dashboard
Create `monitor.py` for real-time stats:
```python
import psutil
import GPUtil
import time
while True:
# GPU stats
gpus = GPUtil.getGPUs()
for gpu in gpus:
print(f"GPU: {gpu.memoryUsed}MB / {gpu.memoryTotal}MB ({gpu.memoryUtil*100:.1f}%)")
# CPU/RAM stats
print(f"RAM: {psutil.virtual_memory().percent}%")
print(f"CPU: {psutil.cpu_percent()}%")
print("-" * 40)
time.sleep(2)
```
## Quick Commands Reference
```bash
# Test on short clip
vr180-matting config.yaml --dry-run
# Process with monitoring
vr180-matting config.yaml --verbose
# Override settings
vr180-matting config.yaml --scale 0.25 --format greenscreen
# Generate config
vr180-matting --generate-config my_config.yaml
```