Compare commits

...

18 Commits

Author SHA1 Message Date
c1aa11e5a0 idk 2025-07-27 10:37:40 -07:00
f0cf3341af amp 2025-07-27 10:23:25 -07:00
ee330fa322 exccept 2025-07-27 10:20:25 -07:00
1e9c42adbd fix streaming 2025-07-27 10:16:39 -07:00
9cc755b5c7 cupy and mask 2025-07-27 10:10:00 -07:00
300ae5613e fucking llms 2025-07-27 10:01:12 -07:00
a479d6a5f0 wtf 2025-07-27 09:57:42 -07:00
e38f63f539 simplify2 2025-07-27 09:55:52 -07:00
66895a87a0 simplify 2025-07-27 09:52:56 -07:00
43be574729 debug 2025-07-27 09:26:47 -07:00
9b7f36fec2 bullshit 2025-07-27 09:23:15 -07:00
7b3ffb7830 idk 2025-07-27 09:20:42 -07:00
1d15fb5bc8 please fucking work 2025-07-27 09:15:48 -07:00
2e5ded7dbf fix api 2025-07-27 09:04:40 -07:00
3a59e87f3e fix something 2025-07-27 08:58:43 -07:00
abc48604a1 timeout init 2025-07-27 08:55:42 -07:00
ee80ed28b6 add stuff true streaming 2025-07-27 08:54:19 -07:00
b5eae7b41d pytorch shit 2025-07-27 08:40:59 -07:00
6 changed files with 784 additions and 81 deletions

View File

@@ -29,7 +29,7 @@ matting:
memory_offload: true # Critical for streaming - offload to CPU when needed
fp16: false # Disable FP16 to avoid type mismatch with compiled models for memory efficiency
continuous_correction: true # Periodically refine tracking
correction_interval: 300 # Correct every 5 seconds at 60fps
correction_interval: 30 # Correct every 0.5 seconds at 60fps (for testing)
stereo:
mode: "master_slave" # Left eye detects, right eye follows

View File

@@ -83,6 +83,10 @@ else
cd ..
fi
# Fix PyTorch version conflicts after SAM2 installation
print_status "Fixing PyTorch version conflicts..."
pip install torchaudio --upgrade --no-deps || print_error "Failed to upgrade torchaudio"
# Download SAM2 checkpoints
print_status "Downloading SAM2 checkpoints..."
cd segment-anything-2/checkpoints

View File

@@ -14,6 +14,7 @@ For a true streaming implementation, you may need to:
import torch
import numpy as np
import cv2
from pathlib import Path
from typing import Dict, Any, List, Optional, Tuple, Generator
import warnings
@@ -80,53 +81,165 @@ class SAM2StreamingProcessor:
vos_optimized=True # Enable full model compilation for speed
)
# Set to eval mode
# Set to eval mode and ensure all model components are on GPU
self.predictor.eval()
# Force all predictor components to GPU
self.predictor = self.predictor.to(self.device)
# Force move all internal components that might be on CPU
if hasattr(self.predictor, 'image_encoder'):
self.predictor.image_encoder = self.predictor.image_encoder.to(self.device)
if hasattr(self.predictor, 'memory_attention'):
self.predictor.memory_attention = self.predictor.memory_attention.to(self.device)
if hasattr(self.predictor, 'memory_encoder'):
self.predictor.memory_encoder = self.predictor.memory_encoder.to(self.device)
if hasattr(self.predictor, 'sam_mask_decoder'):
self.predictor.sam_mask_decoder = self.predictor.sam_mask_decoder.to(self.device)
if hasattr(self.predictor, 'sam_prompt_encoder'):
self.predictor.sam_prompt_encoder = self.predictor.sam_prompt_encoder.to(self.device)
# Note: FP16 conversion can cause type mismatches with compiled models
# Let SAM2 handle precision internally via build_sam2_video_predictor options
if self.fp16 and self.device.type == 'cuda':
print(" FP16 enabled via SAM2 internal settings")
print(f" All SAM2 components moved to {self.device}")
except Exception as e:
raise RuntimeError(f"Failed to initialize SAM2 predictor: {e}")
def init_state(self,
video_path: str,
video_info: Dict[str, Any],
eye: str = 'full') -> Dict[str, Any]:
"""
Initialize inference state for streaming
Initialize inference state for streaming (NO VIDEO LOADING)
Args:
video_path: Path to video file
video_info: Video metadata dict with width, height, frame_count
eye: Eye identifier ('left', 'right', or 'full')
Returns:
Inference state dictionary
"""
# Initialize state with memory offloading enabled
with torch.inference_mode():
state = self.predictor.init_state(
video_path=video_path,
offload_video_to_cpu=self.memory_offload,
offload_state_to_cpu=self.memory_offload,
async_loading_frames=False # We'll provide frames directly
)
print(f" Initializing streaming state for {eye} eye...")
# Monitor memory before initialization
if torch.cuda.is_available():
before_mem = torch.cuda.memory_allocated() / 1e9
print(f" 📊 GPU memory before init: {before_mem:.1f}GB")
# Create streaming state WITHOUT loading video frames
state = self._create_streaming_state(video_info)
# Monitor memory after initialization
if torch.cuda.is_available():
after_mem = torch.cuda.memory_allocated() / 1e9
print(f" 📊 GPU memory after init: {after_mem:.1f}GB (+{after_mem-before_mem:.1f}GB)")
self.states[eye] = state
print(f" Initialized state for {eye} eye")
print(f" ✅ Streaming state initialized for {eye} eye")
return state
def _create_streaming_state(self, video_info: Dict[str, Any]) -> Dict[str, Any]:
"""Create streaming state for frame-by-frame processing"""
# Create a streaming-compatible inference state
# This mirrors SAM2's internal state structure but without video frames
# Create streaming-compatible state without loading video
# This approach avoids the dummy video complexity
with torch.inference_mode():
# Initialize minimal state that mimics SAM2's structure
inference_state = {
'point_inputs_per_obj': {},
'mask_inputs_per_obj': {},
'cached_features': {},
'constants': {},
'obj_id_to_idx': {},
'obj_idx_to_id': {},
'obj_ids': [],
'click_inputs_per_obj': {},
'temp_output_dict_per_obj': {},
'consolidated_frame_inds': {},
'tracking_has_started': False,
'num_frames': video_info.get('total_frames', video_info.get('frame_count', 0)),
'video_height': video_info['height'],
'video_width': video_info['width'],
'device': self.device,
'storage_device': self.device, # Keep everything on GPU
'offload_video_to_cpu': False,
'offload_state_to_cpu': False,
# Add required SAM2 internal structures
'output_dict_per_obj': {},
'temp_output_dict_per_obj': {},
'frames': None, # We provide frames manually
'images': None, # We provide images manually
# Additional SAM2 tracking fields
'frames_tracked_per_obj': {},
'obj_idx_to_id': {},
'obj_id_to_idx': {},
'click_inputs_per_obj': {},
'point_inputs_per_obj': {},
'mask_inputs_per_obj': {},
'output_dict': {},
'memory_bank': {},
'num_obj_tokens': 0,
'max_obj_ptr_num': 16, # SAM2 default
'multimask_output_in_sam': False,
'use_multimask_token_for_obj_ptr': True,
'max_inference_state_frames': -1, # No limit for streaming
'image_feature_cache': {},
'cached_features': {},
'consolidated_frame_inds': {},
}
# Initialize some constants that SAM2 expects
inference_state['constants'] = {
'image_size': max(video_info['height'], video_info['width']),
'backbone_stride': 16, # Standard SAM2 backbone stride
'sam_mask_decoder_extra_args': {},
'sam_prompt_embed_dim': 256,
'sam_image_embedding_size': video_info['height'] // 16, # Assuming 16x downsampling
}
print(f" Created streaming-compatible state")
return inference_state
def _move_state_to_device(self, state: Dict[str, Any], device: torch.device) -> None:
"""Move all tensors in state to the specified device"""
def move_to_device(obj):
if isinstance(obj, torch.Tensor):
return obj.to(device)
elif isinstance(obj, dict):
return {k: move_to_device(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [move_to_device(item) for item in obj]
elif isinstance(obj, tuple):
return tuple(move_to_device(item) for item in obj)
else:
return obj
# Move all state components to device
for key, value in state.items():
if key not in ['video_path', 'num_frames', 'video_height', 'video_width']: # Skip metadata
state[key] = move_to_device(value)
print(f" Moved state tensors to {device}")
def add_detections(self,
state: Dict[str, Any],
frame: np.ndarray,
detections: List[Dict[str, Any]],
frame_idx: int = 0) -> List[int]:
"""
Add detection boxes as prompts to SAM2
Add detection boxes as prompts to SAM2 with frame data
Args:
state: Inference state
frame: Frame image (RGB numpy array)
detections: List of detections with 'box' key
frame_idx: Frame index to add prompts
@@ -137,6 +250,23 @@ class SAM2StreamingProcessor:
warnings.warn(f"No detections to add at frame {frame_idx}")
return []
# Convert frame to tensor (ensure proper format and device)
if isinstance(frame, np.ndarray):
# Convert BGR to RGB if needed (OpenCV uses BGR)
if frame.shape[-1] == 3:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_tensor = torch.from_numpy(frame).float().to(self.device)
else:
frame_tensor = frame.float().to(self.device)
if frame_tensor.ndim == 3:
frame_tensor = frame_tensor.permute(2, 0, 1) # HWC -> CHW
frame_tensor = frame_tensor.unsqueeze(0) # Add batch dimension
# Normalize to [0, 1] range if needed
if frame_tensor.max() > 1.0:
frame_tensor = frame_tensor / 255.0
# Convert detections to SAM2 format
boxes = []
for det in detections:
@@ -145,43 +275,160 @@ class SAM2StreamingProcessor:
boxes_tensor = torch.tensor(boxes, dtype=torch.float32, device=self.device)
# Add boxes as prompts
# Manually process frame and add prompts (streaming approach)
with torch.inference_mode():
_, object_ids, _ = self.predictor.add_new_points_or_box(
inference_state=state,
frame_idx=frame_idx,
obj_id=0, # SAM2 will auto-increment
box=boxes_tensor
)
# Process frame through SAM2's image encoder
backbone_out = self.predictor.forward_image(frame_tensor)
# Store features in state for this frame
state['cached_features'][frame_idx] = backbone_out
# Convert boxes to points for manual implementation
# SAM2 expects corner points from boxes with labels 2,3
points = []
labels = []
for box in boxes:
# Convert box [x1, y1, x2, y2] to corner points
x1, y1, x2, y2 = box
points.extend([[x1, y1], [x2, y2]]) # Top-left and bottom-right corners
labels.extend([2, 3]) # SAM2 standard labels for box corners
points_tensor = torch.tensor(points, dtype=torch.float32, device=self.device)
labels_tensor = torch.tensor(labels, dtype=torch.int32, device=self.device)
try:
# Use add_new_points instead of add_new_points_or_box to avoid device issues
_, object_ids, masks = self.predictor.add_new_points(
inference_state=state,
frame_idx=frame_idx,
obj_id=None, # Let SAM2 auto-assign
points=points_tensor,
labels=labels_tensor,
clear_old_points=True,
normalize_coords=True
)
# Update state with object tracking info
state['obj_ids'] = object_ids
state['tracking_has_started'] = True
except Exception as e:
print(f" Error in add_new_points: {e}")
print(f" Points tensor device: {points_tensor.device}")
print(f" Labels tensor device: {labels_tensor.device}")
print(f" Frame tensor device: {frame_tensor.device}")
# Fallback: manually initialize object tracking
print(f" Using fallback manual object initialization")
object_ids = [i for i in range(len(detections))]
state['obj_ids'] = object_ids
state['tracking_has_started'] = True
# Store detection info for later use
for i, (points_pair, det) in enumerate(zip(zip(points[::2], points[1::2]), detections)):
state['point_inputs_per_obj'][i] = {
frame_idx: {
'points': points_tensor[i*2:(i+1)*2],
'labels': labels_tensor[i*2:(i+1)*2]
}
}
self.object_ids = object_ids
print(f" Added {len(detections)} detections at frame {frame_idx}: objects {object_ids}")
return object_ids
def propagate_in_video_simple(self,
state: Dict[str, Any]) -> Generator[Tuple[int, List[int], np.ndarray], None, None]:
def propagate_single_frame(self,
state: Dict[str, Any],
frame: np.ndarray,
frame_idx: int) -> np.ndarray:
"""
Simple propagation for single eye processing
Propagate masks for a single frame (true streaming)
Yields:
(frame_idx, object_ids, masks) tuples
Args:
state: Inference state
frame: Frame image (RGB numpy array)
frame_idx: Frame index
Returns:
Combined mask for all objects
"""
# Convert frame to tensor (ensure proper format and device)
if isinstance(frame, np.ndarray):
# Convert BGR to RGB if needed (OpenCV uses BGR)
if frame.shape[-1] == 3:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_tensor = torch.from_numpy(frame).float().to(self.device)
else:
frame_tensor = frame.float().to(self.device)
if frame_tensor.ndim == 3:
frame_tensor = frame_tensor.permute(2, 0, 1) # HWC -> CHW
frame_tensor = frame_tensor.unsqueeze(0) # Add batch dimension
# Normalize to [0, 1] range if needed
if frame_tensor.max() > 1.0:
frame_tensor = frame_tensor / 255.0
with torch.inference_mode():
for frame_idx, object_ids, masks in self.predictor.propagate_in_video(state):
# Convert masks to numpy
if isinstance(masks, torch.Tensor):
masks_np = masks.cpu().numpy()
else:
masks_np = masks
yield frame_idx, object_ids, masks_np
# Process frame through SAM2's image encoder
backbone_out = self.predictor.forward_image(frame_tensor)
# Store features in state for this frame
state['cached_features'][frame_idx] = backbone_out
# Use SAM2's single frame inference for propagation
try:
# Run single frame inference for all tracked objects
output_dict = {}
self.predictor._run_single_frame_inference(
inference_state=state,
output_dict=output_dict,
frame_idx=frame_idx,
batch_size=1,
is_init_cond_frame=False, # Not initialization frame
point_inputs=None,
mask_inputs=None,
reverse=False,
run_mem_encoder=True
)
# Periodic memory cleanup
if frame_idx % 100 == 0:
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
# Extract masks from output
if output_dict and 'pred_masks' in output_dict:
pred_masks = output_dict['pred_masks']
# Combine all object masks
if pred_masks.shape[0] > 0:
combined_mask = pred_masks.max(dim=0)[0]
combined_mask_np = (combined_mask > 0.0).cpu().numpy().astype(np.uint8) * 255
else:
combined_mask_np = np.zeros((frame.shape[0], frame.shape[1]), dtype=np.uint8)
else:
combined_mask_np = np.zeros((frame.shape[0], frame.shape[1]), dtype=np.uint8)
except Exception as e:
print(f" Warning: Single frame inference failed: {e}")
combined_mask_np = np.zeros((frame.shape[0], frame.shape[1]), dtype=np.uint8)
# Cleanup old features to prevent memory accumulation
self._cleanup_old_features(state, frame_idx, keep_frames=10)
return combined_mask_np
def _cleanup_old_features(self, state: Dict[str, Any], current_frame: int, keep_frames: int = 10):
"""Remove old cached features to prevent memory accumulation"""
features_to_remove = []
for frame_idx in state.get('cached_features', {}):
if frame_idx < current_frame - keep_frames:
features_to_remove.append(frame_idx)
for frame_idx in features_to_remove:
del state['cached_features'][frame_idx]
# Periodic GPU memory cleanup
if current_frame % 50 == 0:
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
def propagate_frame_pair(self,
left_state: Dict[str, Any],

View File

@@ -0,0 +1,407 @@
"""
Simple SAM2 streaming processor based on det-sam2 pattern
Adapted for current segment-anything-2 API
"""
import torch
import numpy as np
import cv2
import tempfile
import os
from pathlib import Path
from typing import Dict, Any, List, Optional
import warnings
import gc
# Import SAM2 components
try:
from sam2.build_sam import build_sam2_video_predictor
except ImportError:
warnings.warn("SAM2 not installed. Please install segment-anything-2 first.")
class SAM2StreamingProcessor:
"""Simple streaming integration with SAM2 following det-sam2 pattern"""
def __init__(self, config: Dict[str, Any]):
self.config = config
self.device = torch.device(config.get('hardware', {}).get('device', 'cuda'))
# SAM2 model configuration
model_cfg_name = config.get('matting', {}).get('sam2_model_cfg', 'sam2.1_hiera_l')
checkpoint = config.get('matting', {}).get('sam2_checkpoint',
'segment-anything-2/checkpoints/sam2.1_hiera_large.pt')
# Map config name to Hydra path (like the examples show)
config_mapping = {
'sam2.1_hiera_t': 'configs/sam2.1/sam2.1_hiera_t.yaml',
'sam2.1_hiera_s': 'configs/sam2.1/sam2.1_hiera_s.yaml',
'sam2.1_hiera_b+': 'configs/sam2.1/sam2.1_hiera_b+.yaml',
'sam2.1_hiera_l': 'configs/sam2.1/sam2.1_hiera_l.yaml',
}
model_cfg = config_mapping.get(model_cfg_name, model_cfg_name)
# Build predictor (disable compilation to fix CUDA graph issues)
self.predictor = build_sam2_video_predictor(
model_cfg, # Relative path from sam2 package
checkpoint,
device=self.device,
vos_optimized=False, # Disable to avoid CUDA graph issues
hydra_overrides_extra=[
"++model.compile_image_encoder=false", # Disable compilation
]
)
# Frame buffer for streaming (like det-sam2)
self.frame_buffer = []
self.frame_buffer_size = config.get('streaming', {}).get('buffer_frames', 10)
# State management (simple)
self.inference_state = None
self.temp_dir = None
self.object_ids = []
# Memory management
self.memory_offload = config.get('matting', {}).get('memory_offload', True)
self.max_frames_to_track = config.get('matting', {}).get('correction_interval', 300)
print(f"🎯 Simple SAM2 streaming processor initialized:")
print(f" Model: {model_cfg}")
print(f" Device: {self.device}")
print(f" Buffer size: {self.frame_buffer_size}")
print(f" Memory offload: {self.memory_offload}")
def add_frame_and_detections(self,
frame: np.ndarray,
detections: List[Dict[str, Any]],
frame_idx: int) -> np.ndarray:
"""
Add frame to buffer and process detections (det-sam2 pattern)
Args:
frame: Input frame (BGR)
detections: List of detections with 'box' key
frame_idx: Global frame index
Returns:
Mask for current frame
"""
# Add frame to buffer
self.frame_buffer.append({
'frame': frame,
'frame_idx': frame_idx,
'detections': detections
})
# Process when buffer is full or when we have detections
if len(self.frame_buffer) >= self.frame_buffer_size or detections:
return self._process_buffer()
else:
# For frames without detections, still try to propagate if we have existing objects
if self.inference_state is not None and self.object_ids:
return self._propagate_existing_objects()
else:
# Return empty mask if no processing yet
return np.zeros((frame.shape[0], frame.shape[1]), dtype=np.uint8)
def _process_buffer(self) -> np.ndarray:
"""Process current frame buffer (adapted det-sam2 approach)"""
if not self.frame_buffer:
return np.zeros((480, 640), dtype=np.uint8)
try:
# Create temporary directory for frames (current SAM2 API requirement)
self._create_temp_frames()
# Initialize or update SAM2 state
if self.inference_state is None:
# First time: initialize state with temp directory
self.inference_state = self.predictor.init_state(
video_path=self.temp_dir,
offload_video_to_cpu=self.memory_offload,
offload_state_to_cpu=self.memory_offload
)
print(f" Initialized SAM2 state with {len(self.frame_buffer)} frames")
else:
# Subsequent times: we need to reinitialize since current SAM2 lacks update_state
# This is the key difference from det-sam2 reference
self._cleanup_temp_frames()
self._create_temp_frames()
self.inference_state = self.predictor.init_state(
video_path=self.temp_dir,
offload_video_to_cpu=self.memory_offload,
offload_state_to_cpu=self.memory_offload
)
print(f" Reinitialized SAM2 state with {len(self.frame_buffer)} frames")
# Add detections as prompts (standard SAM2 API)
self._add_detection_prompts()
# Get masks via propagation
masks = self._get_current_masks()
# Clean up old frames to prevent memory accumulation
self._cleanup_old_frames()
return masks
except Exception as e:
print(f" Warning: Buffer processing failed: {e}")
return np.zeros((480, 640), dtype=np.uint8)
def _create_temp_frames(self):
"""Create temporary directory with frame images for SAM2"""
if self.temp_dir:
self._cleanup_temp_frames()
self.temp_dir = tempfile.mkdtemp(prefix='sam2_streaming_')
for i, buffer_item in enumerate(self.frame_buffer):
frame = buffer_item['frame']
# Convert BGR to RGB for SAM2
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Save as JPEG (SAM2 expects JPEG images in directory)
frame_path = os.path.join(self.temp_dir, f"{i:05d}.jpg")
cv2.imwrite(frame_path, cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2BGR))
def _add_detection_prompts(self):
"""Add detection boxes as prompts to SAM2 (standard API)"""
for buffer_idx, buffer_item in enumerate(self.frame_buffer):
detections = buffer_item.get('detections', [])
for det_idx, detection in enumerate(detections):
box = detection['box'] # [x1, y1, x2, y2]
# Use standard SAM2 API
try:
_, out_obj_ids, out_mask_logits = self.predictor.add_new_points_or_box(
inference_state=self.inference_state,
frame_idx=buffer_idx, # Frame index within buffer
obj_id=det_idx, # Simple object ID
box=np.array(box, dtype=np.float32)
)
# Track object IDs
if det_idx not in self.object_ids:
self.object_ids.append(det_idx)
except Exception as e:
print(f" Warning: Failed to add detection: {e}")
continue
def _get_current_masks(self) -> np.ndarray:
"""Get masks for current frame via propagation"""
if not self.object_ids:
# No objects to track
frame_shape = self.frame_buffer[-1]['frame'].shape
return np.zeros((frame_shape[0], frame_shape[1]), dtype=np.uint8)
try:
# Use SAM2's propagate_in_video (standard API)
latest_frame_idx = len(self.frame_buffer) - 1
masks_for_frame = []
for out_frame_idx, out_obj_ids, out_mask_logits in self.predictor.propagate_in_video(
self.inference_state,
start_frame_idx=latest_frame_idx,
max_frame_num_to_track=1, # Just current frame
reverse=False
):
if out_frame_idx == latest_frame_idx:
# Combine all object masks
if len(out_mask_logits) > 0:
combined_mask = None
for mask_logit in out_mask_logits:
mask = (mask_logit > 0.0).cpu().numpy()
if combined_mask is None:
combined_mask = mask.astype(bool)
else:
combined_mask = combined_mask | mask.astype(bool)
return (combined_mask * 255).astype(np.uint8)
# If no masks found, return empty
frame_shape = self.frame_buffer[-1]['frame'].shape
return np.zeros((frame_shape[0], frame_shape[1]), dtype=np.uint8)
except Exception as e:
print(f" Warning: Mask propagation failed: {e}")
frame_shape = self.frame_buffer[-1]['frame'].shape
return np.zeros((frame_shape[0], frame_shape[1]), dtype=np.uint8)
def _propagate_existing_objects(self) -> np.ndarray:
"""Propagate existing objects without adding new detections"""
if not self.object_ids or not self.frame_buffer:
frame_shape = self.frame_buffer[-1]['frame'].shape if self.frame_buffer else (480, 640)
return np.zeros((frame_shape[0], frame_shape[1]), dtype=np.uint8)
try:
# Update temp frames with current buffer
self._create_temp_frames()
# Reinitialize state (since we can't incrementally update)
self.inference_state = self.predictor.init_state(
video_path=self.temp_dir,
offload_video_to_cpu=self.memory_offload,
offload_state_to_cpu=self.memory_offload
)
# Re-add all previous detections from buffer
for buffer_idx, buffer_item in enumerate(self.frame_buffer):
detections = buffer_item.get('detections', [])
if detections: # Only add frames that had detections
for det_idx, detection in enumerate(detections):
box = detection['box']
try:
self.predictor.add_new_points_or_box(
inference_state=self.inference_state,
frame_idx=buffer_idx,
obj_id=det_idx,
box=np.array(box, dtype=np.float32)
)
except Exception as e:
print(f" Warning: Failed to re-add detection: {e}")
# Get masks for latest frame
latest_frame_idx = len(self.frame_buffer) - 1
for out_frame_idx, out_obj_ids, out_mask_logits in self.predictor.propagate_in_video(
self.inference_state,
start_frame_idx=latest_frame_idx,
max_frame_num_to_track=1,
reverse=False
):
if out_frame_idx == latest_frame_idx and len(out_mask_logits) > 0:
combined_mask = None
for mask_logit in out_mask_logits:
mask = (mask_logit > 0.0).cpu().numpy()
if combined_mask is None:
combined_mask = mask.astype(bool)
else:
combined_mask = combined_mask | mask.astype(bool)
return (combined_mask * 255).astype(np.uint8)
# If no masks, return empty
frame_shape = self.frame_buffer[-1]['frame'].shape
return np.zeros((frame_shape[0], frame_shape[1]), dtype=np.uint8)
except Exception as e:
print(f" Warning: Object propagation failed: {e}")
frame_shape = self.frame_buffer[-1]['frame'].shape
return np.zeros((frame_shape[0], frame_shape[1]), dtype=np.uint8)
except Exception as e:
print(f" Warning: Mask propagation failed: {e}")
frame_shape = self.frame_buffer[-1]['frame'].shape
return np.zeros((frame_shape[0], frame_shape[1]), dtype=np.uint8)
def _cleanup_old_frames(self):
"""Clean up old frames from buffer (det-sam2 pattern)"""
# Keep only recent frames to prevent memory accumulation
if len(self.frame_buffer) > self.frame_buffer_size:
self.frame_buffer = self.frame_buffer[-self.frame_buffer_size:]
# Periodic GPU memory cleanup
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
def _cleanup_temp_frames(self):
"""Clean up temporary frame directory"""
if self.temp_dir and os.path.exists(self.temp_dir):
import shutil
shutil.rmtree(self.temp_dir)
self.temp_dir = None
def cleanup(self):
"""Clean up all resources"""
self._cleanup_temp_frames()
self.frame_buffer.clear()
self.object_ids.clear()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
print("🧹 Simple SAM2 streaming processor cleaned up")
def apply_mask_to_frame(self,
frame: np.ndarray,
mask: np.ndarray,
output_format: str = "alpha",
background_color: tuple = (0, 255, 0)) -> np.ndarray:
"""
Apply mask to frame with specified output format (matches chunked implementation)
Args:
frame: Input frame (BGR)
mask: Binary mask (0-255 or boolean)
output_format: "alpha" or "greenscreen"
background_color: RGB background color for greenscreen mode
Returns:
Processed frame
"""
if mask is None:
return frame
# Ensure mask is 2D (handle 3D masks properly)
if mask.ndim == 3:
mask = mask.squeeze()
# Resize mask to match frame if needed (use INTER_NEAREST for binary masks)
if mask.shape[:2] != frame.shape[:2]:
import cv2
# Convert to uint8 for resizing, then back to bool
if mask.dtype == bool:
mask_uint8 = mask.astype(np.uint8) * 255
else:
mask_uint8 = mask.astype(np.uint8)
mask_resized = cv2.resize(mask_uint8,
(frame.shape[1], frame.shape[0]),
interpolation=cv2.INTER_NEAREST)
mask = mask_resized.astype(bool) if mask.dtype == bool else mask_resized
if output_format == "alpha":
# Create RGBA output (matches chunked implementation)
output = np.zeros((frame.shape[0], frame.shape[1], 4), dtype=np.uint8)
output[:, :, :3] = frame
if mask.dtype == bool:
output[:, :, 3] = mask.astype(np.uint8) * 255
else:
output[:, :, 3] = mask.astype(np.uint8)
return output
elif output_format == "greenscreen":
# Create RGB output with background (matches chunked implementation)
output = np.full_like(frame, background_color, dtype=np.uint8)
if mask.dtype == bool:
output[mask] = frame[mask]
else:
mask_bool = mask.astype(bool)
output[mask_bool] = frame[mask_bool]
return output
else:
raise ValueError(f"Unsupported output format: {output_format}. Use 'alpha' or 'greenscreen'")
def get_memory_usage(self) -> Dict[str, float]:
"""
Get current memory usage statistics
Returns:
Dictionary with memory usage info
"""
stats = {}
if torch.cuda.is_available():
# GPU memory stats
stats['cuda_allocated_gb'] = torch.cuda.memory_allocated() / (1024**3)
stats['cuda_reserved_gb'] = torch.cuda.memory_reserved() / (1024**3)
stats['cuda_max_allocated_gb'] = torch.cuda.max_memory_allocated() / (1024**3)
return stats

View File

@@ -15,7 +15,7 @@ import warnings
from .frame_reader import StreamingFrameReader
from .frame_writer import StreamingFrameWriter
from .stereo_manager import StereoConsistencyManager
from .sam2_streaming import SAM2StreamingProcessor
from .sam2_streaming_simple import SAM2StreamingProcessor
from .detector import PersonDetector
from .config import StreamingConfig
@@ -102,25 +102,17 @@ class VR180StreamingProcessor:
self.initialize()
self.start_time = time.time()
# Initialize SAM2 states for both eyes
print("🎯 Initializing SAM2 streaming states...")
left_state = self.sam2_processor.init_state(
self.config.input.video_path,
eye='left'
)
right_state = self.sam2_processor.init_state(
self.config.input.video_path,
eye='right'
)
# Simple SAM2 initialization (no complex state management needed)
print("🎯 SAM2 streaming processor ready...")
# Process first frame to establish detections
print("🔍 Processing first frame for initial detection...")
if not self._initialize_tracking(left_state, right_state):
if not self._initialize_tracking():
raise RuntimeError("Failed to initialize tracking - no persons detected")
# Main streaming loop
print("\n🎬 Starting streaming processing loop...")
self._streaming_loop(left_state, right_state)
self._streaming_loop()
except KeyboardInterrupt:
print("\n⚠️ Processing interrupted by user")
@@ -134,7 +126,7 @@ class VR180StreamingProcessor:
finally:
self._finalize()
def _initialize_tracking(self, left_state: Dict, right_state: Dict) -> bool:
def _initialize_tracking(self) -> bool:
"""Initialize tracking with first frame detection"""
# Read and process first frame
first_frame = self.frame_reader.read_frame()
@@ -158,19 +150,15 @@ class VR180StreamingProcessor:
print(f" Detected {len(detections)} person(s) in first frame")
# Add detections to both eyes
self.sam2_processor.add_detections(left_state, detections, frame_idx=0)
# Process with simple SAM2 approach
left_masks = self.sam2_processor.add_frame_and_detections(left_eye, detections, 0)
# Transfer detections to slave eye
# Transfer detections to right eye
transferred_detections = self.stereo_manager.transfer_detections(
detections,
'left_to_right' if self.stereo_manager.master_eye == 'left' else 'right_to_left'
)
self.sam2_processor.add_detections(right_state, transferred_detections, frame_idx=0)
# Process and write first frame
left_masks = self.sam2_processor._propagate_single_frame(left_state, left_eye, 0)
right_masks = self.sam2_processor._propagate_single_frame(right_state, right_eye, 0)
right_masks = self.sam2_processor.add_frame_and_detections(right_eye, transferred_detections, 0)
# Apply masks and write
processed_frame = self._apply_masks_to_frame(first_frame, left_masks, right_masks)
@@ -179,7 +167,7 @@ class VR180StreamingProcessor:
self.frames_processed = 1
return True
def _streaming_loop(self, left_state: Dict, right_state: Dict) -> None:
def _streaming_loop(self) -> None:
"""Main streaming processing loop"""
frame_times = []
last_log_time = time.time()
@@ -195,23 +183,36 @@ class VR180StreamingProcessor:
# Split into eyes
left_eye, right_eye = self.stereo_manager.split_frame(frame)
# Propagate masks for both eyes
left_masks, right_masks = self.sam2_processor.propagate_frame_pair(
left_state, right_state, left_eye, right_eye, frame_idx
)
# Check if we need to run detection for continuous correction
detections = []
if (self.config.matting.continuous_correction and
frame_idx % self.config.matting.correction_interval == 0):
print(f"\n🔄 Running YOLO detection for correction at frame {frame_idx}")
master_eye = left_eye if self.stereo_manager.master_eye == 'left' else right_eye
detections = self.detector.detect_persons(master_eye)
if detections:
print(f" Detected {len(detections)} person(s) for correction")
else:
print(f" No persons detected for correction")
# Process frames (with detections if this is a correction frame)
left_masks = self.sam2_processor.add_frame_and_detections(left_eye, detections, frame_idx)
# For right eye, transfer detections if we have them
if detections:
transferred_detections = self.stereo_manager.transfer_detections(
detections,
'left_to_right' if self.stereo_manager.master_eye == 'left' else 'right_to_left'
)
right_masks = self.sam2_processor.add_frame_and_detections(right_eye, transferred_detections, frame_idx)
else:
right_masks = self.sam2_processor.add_frame_and_detections(right_eye, [], frame_idx)
# Validate stereo consistency
right_masks = self.stereo_manager.validate_masks(
left_masks, right_masks, frame_idx
)
# Apply continuous correction if enabled
if (self.config.matting.continuous_correction and
frame_idx % self.config.matting.correction_interval == 0):
self._apply_continuous_correction(
left_state, right_state, left_eye, right_eye, frame_idx
)
# Apply masks and write frame
processed_frame = self._apply_masks_to_frame(frame, left_masks, right_masks)
self.frame_writer.write_frame(processed_frame)
@@ -282,21 +283,20 @@ class VR180StreamingProcessor:
return left_processed
def _apply_continuous_correction(self,
left_state: Dict,
right_state: Dict,
left_eye: np.ndarray,
right_eye: np.ndarray,
frame_idx: int) -> None:
"""Apply continuous correction to maintain tracking accuracy"""
print(f"\n🔄 Applying continuous correction at frame {frame_idx}")
# Detect on master eye
# Detect on master eye and add fresh detections
master_eye = left_eye if self.stereo_manager.master_eye == 'left' else right_eye
master_state = left_state if self.stereo_manager.master_eye == 'left' else right_state
detections = self.detector.detect_persons(master_eye)
self.sam2_processor.apply_continuous_correction(
master_state, master_eye, frame_idx, self.detector
)
if detections:
print(f" Adding {len(detections)} fresh detection(s) for correction")
# Add fresh detections to help correct drift
self.sam2_processor.add_frame_and_detections(master_eye, detections, frame_idx)
# Transfer corrections to slave eye
# Note: This is simplified - actual implementation would transfer the refined prompts

View File

@@ -0,0 +1,45 @@
"""
Timeout wrapper for SAM2 initialization to prevent hanging
"""
import signal
import functools
from typing import Any, Callable
class TimeoutError(Exception):
pass
def timeout(seconds: int = 120):
"""Decorator to add timeout to function calls"""
def decorator(func: Callable) -> Callable:
@functools.wraps(func)
def wrapper(*args, **kwargs) -> Any:
# Define signal handler
def timeout_handler(signum, frame):
raise TimeoutError(f"Function {func.__name__} timed out after {seconds} seconds")
# Set signal handler
old_handler = signal.signal(signal.SIGALRM, timeout_handler)
signal.alarm(seconds)
try:
result = func(*args, **kwargs)
finally:
# Restore old handler
signal.alarm(0)
signal.signal(signal.SIGALRM, old_handler)
return result
return wrapper
return decorator
@timeout(120) # 2 minute timeout
def safe_init_state(predictor, video_path: str, **kwargs) -> Any:
"""Safely initialize SAM2 state with timeout"""
return predictor.init_state(
video_path=video_path,
**kwargs
)