Compare commits
14 Commits
main
...
4d1361df46
| Author | SHA1 | Date | |
|---|---|---|---|
| 4d1361df46 | |||
| 884cb8dce2 | |||
| 36f58acb8b | |||
| fb51e82fd4 | |||
| 9f572d4430 | |||
| ba8706b7ae | |||
| 734445cf48 | |||
| 80f947c91b | |||
| 6f93abcb08 | |||
| c368d6dc97 | |||
| e7e9c5597b | |||
| 3af16df71e | |||
| df7b009a7b | |||
| 725a781456 |
193
analyze_memory_profile.py
Normal file
193
analyze_memory_profile.py
Normal file
@@ -0,0 +1,193 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Analyze memory profile JSON files to identify OOM causes
|
||||
"""
|
||||
|
||||
import json
|
||||
import glob
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
def analyze_memory_files():
|
||||
"""Analyze partial memory profile files"""
|
||||
|
||||
# Get all partial files in order
|
||||
files = sorted(glob.glob('memory_profile_partial_*.json'))
|
||||
|
||||
if not files:
|
||||
print("❌ No memory profile files found!")
|
||||
print("Expected files like: memory_profile_partial_0.json")
|
||||
return
|
||||
|
||||
print(f"🔍 Found {len(files)} memory profile files")
|
||||
print("=" * 60)
|
||||
|
||||
peak_memory = 0
|
||||
peak_vram = 0
|
||||
critical_points = []
|
||||
all_checkpoints = []
|
||||
|
||||
for i, file in enumerate(files):
|
||||
try:
|
||||
with open(file, 'r') as f:
|
||||
data = json.load(f)
|
||||
|
||||
timeline = data.get('timeline', [])
|
||||
if not timeline:
|
||||
continue
|
||||
|
||||
# Find peaks in this file
|
||||
file_peak_rss = max([d['rss_gb'] for d in timeline])
|
||||
file_peak_vram = max([d['vram_gb'] for d in timeline])
|
||||
|
||||
if file_peak_rss > peak_memory:
|
||||
peak_memory = file_peak_rss
|
||||
if file_peak_vram > peak_vram:
|
||||
peak_vram = file_peak_vram
|
||||
|
||||
# Find memory growth spikes (>3GB increase)
|
||||
for j in range(1, len(timeline)):
|
||||
prev_rss = timeline[j-1]['rss_gb']
|
||||
curr_rss = timeline[j]['rss_gb']
|
||||
growth = curr_rss - prev_rss
|
||||
|
||||
if growth > 3.0: # >3GB growth spike
|
||||
checkpoint = timeline[j].get('checkpoint', f'sample_{j}')
|
||||
critical_points.append({
|
||||
'file': file,
|
||||
'file_index': i,
|
||||
'sample': j,
|
||||
'timestamp': timeline[j]['timestamp'],
|
||||
'rss_gb': curr_rss,
|
||||
'vram_gb': timeline[j]['vram_gb'],
|
||||
'growth_gb': growth,
|
||||
'checkpoint': checkpoint
|
||||
})
|
||||
|
||||
# Collect all checkpoints
|
||||
checkpoints = [d for d in timeline if 'checkpoint' in d]
|
||||
for cp in checkpoints:
|
||||
cp['file'] = file
|
||||
cp['file_index'] = i
|
||||
all_checkpoints.append(cp)
|
||||
|
||||
# Show progress for this file
|
||||
if timeline:
|
||||
start_rss = timeline[0]['rss_gb']
|
||||
end_rss = timeline[-1]['rss_gb']
|
||||
growth = end_rss - start_rss
|
||||
samples = len(timeline)
|
||||
|
||||
print(f"📊 File {i+1:2d}: {start_rss:5.1f}GB → {end_rss:5.1f}GB "
|
||||
f"(+{growth:4.1f}GB) [{samples:3d} samples]")
|
||||
|
||||
# Show significant checkpoints from this file
|
||||
if checkpoints:
|
||||
for cp in checkpoints:
|
||||
print(f" 📍 {cp['checkpoint']}: {cp['rss_gb']:.1f}GB")
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Error reading {file}: {e}")
|
||||
|
||||
print("\n" + "=" * 60)
|
||||
print("🎯 ANALYSIS SUMMARY")
|
||||
print("=" * 60)
|
||||
|
||||
print(f"📈 Peak Memory: {peak_memory:.1f} GB")
|
||||
print(f"🎮 Peak VRAM: {peak_vram:.1f} GB")
|
||||
print(f"⚡ Growth Spikes: {len(critical_points)} events >3GB")
|
||||
|
||||
if critical_points:
|
||||
print(f"\n💥 MEMORY GROWTH SPIKES (>3GB):")
|
||||
print(" Location Growth Total VRAM")
|
||||
print(" " + "-" * 55)
|
||||
|
||||
for point in critical_points:
|
||||
location = point['checkpoint'][:30].ljust(30)
|
||||
print(f" {location} +{point['growth_gb']:4.1f}GB → {point['rss_gb']:5.1f}GB {point['vram_gb']:4.1f}GB")
|
||||
|
||||
if all_checkpoints:
|
||||
print(f"\n📍 CHECKPOINT PROGRESSION:")
|
||||
print(" Checkpoint Memory VRAM File")
|
||||
print(" " + "-" * 55)
|
||||
|
||||
for cp in all_checkpoints:
|
||||
checkpoint = cp['checkpoint'][:30].ljust(30)
|
||||
file_num = cp['file_index'] + 1
|
||||
print(f" {checkpoint} {cp['rss_gb']:5.1f}GB {cp['vram_gb']:4.1f}GB #{file_num}")
|
||||
|
||||
# Memory growth analysis
|
||||
if len(all_checkpoints) > 1:
|
||||
print(f"\n📊 MEMORY GROWTH ANALYSIS:")
|
||||
|
||||
# Find the biggest memory jumps between checkpoints
|
||||
big_jumps = []
|
||||
for i in range(1, len(all_checkpoints)):
|
||||
prev_cp = all_checkpoints[i-1]
|
||||
curr_cp = all_checkpoints[i]
|
||||
|
||||
growth = curr_cp['rss_gb'] - prev_cp['rss_gb']
|
||||
if growth > 2.0: # >2GB jump
|
||||
big_jumps.append({
|
||||
'from': prev_cp['checkpoint'],
|
||||
'to': curr_cp['checkpoint'],
|
||||
'growth': growth,
|
||||
'from_memory': prev_cp['rss_gb'],
|
||||
'to_memory': curr_cp['rss_gb']
|
||||
})
|
||||
|
||||
if big_jumps:
|
||||
print(" Major jumps (>2GB):")
|
||||
for jump in big_jumps:
|
||||
print(f" {jump['from']} → {jump['to']}: "
|
||||
f"+{jump['growth']:.1f}GB ({jump['from_memory']:.1f}→{jump['to_memory']:.1f}GB)")
|
||||
else:
|
||||
print(" ✅ No major memory jumps detected")
|
||||
|
||||
# Diagnosis
|
||||
print(f"\n🔬 DIAGNOSIS:")
|
||||
|
||||
if peak_memory > 400:
|
||||
print(" 🔴 CRITICAL: Memory usage exceeded 400GB")
|
||||
print(" 💡 Recommendation: Reduce chunk_size to 200-300 frames")
|
||||
elif peak_memory > 200:
|
||||
print(" 🟡 HIGH: Memory usage over 200GB")
|
||||
print(" 💡 Recommendation: Reduce chunk_size to 400 frames")
|
||||
else:
|
||||
print(" 🟢 MODERATE: Memory usage under 200GB")
|
||||
|
||||
if critical_points:
|
||||
# Find most common growth spike locations
|
||||
spike_locations = {}
|
||||
for point in critical_points:
|
||||
location = point['checkpoint']
|
||||
spike_locations[location] = spike_locations.get(location, 0) + 1
|
||||
|
||||
print("\n 🎯 Most problematic locations:")
|
||||
for location, count in sorted(spike_locations.items(), key=lambda x: x[1], reverse=True)[:3]:
|
||||
print(f" {location}: {count} spikes")
|
||||
|
||||
print(f"\n💡 NEXT STEPS:")
|
||||
if 'merge' in str(critical_points).lower():
|
||||
print(" 1. Chunk merging still causing memory accumulation")
|
||||
print(" 2. Check if streaming merge is actually being used")
|
||||
print(" 3. Verify chunk files are being deleted immediately")
|
||||
elif 'propagation' in str(critical_points).lower():
|
||||
print(" 1. SAM2 propagation using too much memory")
|
||||
print(" 2. Reduce chunk_size further (try 300 frames)")
|
||||
print(" 3. Enable more aggressive frame release")
|
||||
else:
|
||||
print(" 1. Review the checkpoint progression above")
|
||||
print(" 2. Focus on locations with biggest memory spikes")
|
||||
print(" 3. Consider reducing chunk_size if spikes are large")
|
||||
|
||||
def main():
|
||||
print("🔍 MEMORY PROFILE ANALYZER")
|
||||
print("Analyzing memory profile files for OOM causes...")
|
||||
print()
|
||||
|
||||
analyze_memory_files()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
151
debug_memory_leak.py
Normal file
151
debug_memory_leak.py
Normal file
@@ -0,0 +1,151 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Debug memory leak between chunks - track exactly where memory accumulates
|
||||
"""
|
||||
|
||||
import psutil
|
||||
import gc
|
||||
from pathlib import Path
|
||||
import sys
|
||||
|
||||
def detailed_memory_check(label):
|
||||
"""Get detailed memory info"""
|
||||
process = psutil.Process()
|
||||
memory_info = process.memory_info()
|
||||
|
||||
rss_gb = memory_info.rss / (1024**3)
|
||||
vms_gb = memory_info.vms / (1024**3)
|
||||
|
||||
# System memory
|
||||
sys_memory = psutil.virtual_memory()
|
||||
available_gb = sys_memory.available / (1024**3)
|
||||
|
||||
print(f"🔍 {label}:")
|
||||
print(f" RSS: {rss_gb:.2f} GB (physical memory)")
|
||||
print(f" VMS: {vms_gb:.2f} GB (virtual memory)")
|
||||
print(f" Available: {available_gb:.2f} GB")
|
||||
|
||||
return rss_gb
|
||||
|
||||
def simulate_chunk_processing():
|
||||
"""Simulate the chunk processing to see where memory accumulates"""
|
||||
|
||||
print("🚀 SIMULATING CHUNK PROCESSING TO FIND MEMORY LEAK")
|
||||
print("=" * 60)
|
||||
|
||||
base_memory = detailed_memory_check("0. Baseline")
|
||||
|
||||
# Step 1: Import everything (with lazy loading)
|
||||
print("\n📦 Step 1: Imports")
|
||||
from vr180_matting.config import VR180Config
|
||||
from vr180_matting.vr180_processor import VR180Processor
|
||||
|
||||
import_memory = detailed_memory_check("1. After imports")
|
||||
import_growth = import_memory - base_memory
|
||||
print(f" Growth: +{import_growth:.2f} GB")
|
||||
|
||||
# Step 2: Load config
|
||||
print("\n⚙️ Step 2: Config loading")
|
||||
config = VR180Config.from_yaml('config.yaml')
|
||||
config_memory = detailed_memory_check("2. After config load")
|
||||
config_growth = config_memory - import_memory
|
||||
print(f" Growth: +{config_growth:.2f} GB")
|
||||
|
||||
# Step 3: Initialize processor (models still lazy)
|
||||
print("\n🏗️ Step 3: Processor initialization")
|
||||
processor = VR180Processor(config)
|
||||
processor_memory = detailed_memory_check("3. After processor init")
|
||||
processor_growth = processor_memory - config_memory
|
||||
print(f" Growth: +{processor_growth:.2f} GB")
|
||||
|
||||
# Step 4: Load video info (lightweight)
|
||||
print("\n🎬 Step 4: Video info loading")
|
||||
try:
|
||||
video_info = processor.load_video_info(config.input.video_path)
|
||||
print(f" Video: {video_info.get('width', 'unknown')}x{video_info.get('height', 'unknown')}, "
|
||||
f"{video_info.get('total_frames', 'unknown')} frames")
|
||||
except Exception as e:
|
||||
print(f" Warning: Could not load video info: {e}")
|
||||
|
||||
video_info_memory = detailed_memory_check("4. After video info")
|
||||
video_info_growth = video_info_memory - processor_memory
|
||||
print(f" Growth: +{video_info_growth:.2f} GB")
|
||||
|
||||
# Step 5: Simulate chunk 0 processing (this is where models actually load)
|
||||
print("\n🔄 Step 5: Simulating chunk 0 processing...")
|
||||
|
||||
# This is where the real memory usage starts
|
||||
print(" Loading first 10 frames to trigger model loading...")
|
||||
try:
|
||||
# Read a small number of frames to trigger model loading
|
||||
frames = processor.read_video_frames(
|
||||
config.input.video_path,
|
||||
start_frame=0,
|
||||
num_frames=10, # Just 10 frames to trigger model loading
|
||||
scale_factor=config.processing.scale_factor
|
||||
)
|
||||
|
||||
frames_memory = detailed_memory_check("5a. After reading 10 frames")
|
||||
frames_growth = frames_memory - video_info_memory
|
||||
print(f" 10 frames growth: +{frames_growth:.2f} GB")
|
||||
|
||||
# Free frames
|
||||
del frames
|
||||
gc.collect()
|
||||
|
||||
after_free_memory = detailed_memory_check("5b. After freeing 10 frames")
|
||||
free_improvement = frames_memory - after_free_memory
|
||||
print(f" Memory freed: -{free_improvement:.2f} GB")
|
||||
|
||||
except Exception as e:
|
||||
print(f" Could not simulate frame loading: {e}")
|
||||
after_free_memory = video_info_memory
|
||||
|
||||
print(f"\n📊 MEMORY ANALYSIS:")
|
||||
print(f" Baseline → Final: {base_memory:.2f}GB → {after_free_memory:.2f}GB")
|
||||
print(f" Total growth: +{after_free_memory - base_memory:.2f}GB")
|
||||
|
||||
if after_free_memory - base_memory > 10:
|
||||
print(f" 🔴 HIGH: Memory growth > 10GB before any real processing")
|
||||
print(f" 💡 This suggests model loading is using too much memory")
|
||||
elif after_free_memory - base_memory > 5:
|
||||
print(f" 🟡 MODERATE: Memory growth 5-10GB")
|
||||
print(f" 💡 Normal for model loading, but monitor chunk processing")
|
||||
else:
|
||||
print(f" 🟢 GOOD: Memory growth < 5GB")
|
||||
print(f" 💡 Initialization memory usage is reasonable")
|
||||
|
||||
print(f"\n🎯 KEY INSIGHTS:")
|
||||
if import_growth > 1:
|
||||
print(f" - Import growth: {import_growth:.2f}GB (fixed with lazy loading)")
|
||||
if processor_growth > 10:
|
||||
print(f" - Processor init: {processor_growth:.2f}GB (investigate model pre-loading)")
|
||||
|
||||
print(f"\n💡 RECOMMENDATIONS:")
|
||||
if after_free_memory - base_memory > 15:
|
||||
print(f" 1. Reduce chunk_size to 200-300 frames")
|
||||
print(f" 2. Use smaller models (yolov8n instead of yolov8m)")
|
||||
print(f" 3. Enable FP16 mode for SAM2")
|
||||
elif after_free_memory - base_memory > 8:
|
||||
print(f" 1. Monitor chunk processing carefully")
|
||||
print(f" 2. Use streaming merge (should be automatic)")
|
||||
print(f" 3. Current settings may be acceptable")
|
||||
else:
|
||||
print(f" 1. Settings look good for initialization")
|
||||
print(f" 2. Focus on chunk processing memory leaks")
|
||||
|
||||
def main():
|
||||
if len(sys.argv) != 2:
|
||||
print("Usage: python debug_memory_leak.py <config.yaml>")
|
||||
print("This simulates initialization to find memory leaks")
|
||||
sys.exit(1)
|
||||
|
||||
config_path = sys.argv[1]
|
||||
if not Path(config_path).exists():
|
||||
print(f"Config file not found: {config_path}")
|
||||
sys.exit(1)
|
||||
|
||||
simulate_chunk_processing()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
249
memory_profiler_script.py
Normal file
249
memory_profiler_script.py
Normal file
@@ -0,0 +1,249 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Memory profiling script for VR180 matting pipeline
|
||||
Tracks memory usage during processing to identify leaks
|
||||
"""
|
||||
|
||||
import sys
|
||||
import time
|
||||
import psutil
|
||||
import tracemalloc
|
||||
import subprocess
|
||||
import gc
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Tuple
|
||||
import threading
|
||||
import json
|
||||
|
||||
class MemoryProfiler:
|
||||
def __init__(self, output_file: str = "memory_profile.json"):
|
||||
self.output_file = output_file
|
||||
self.data = []
|
||||
self.process = psutil.Process()
|
||||
self.running = False
|
||||
self.thread = None
|
||||
self.checkpoint_counter = 0
|
||||
|
||||
def start_monitoring(self, interval: float = 1.0):
|
||||
"""Start continuous memory monitoring"""
|
||||
tracemalloc.start()
|
||||
self.running = True
|
||||
self.thread = threading.Thread(target=self._monitor_loop, args=(interval,))
|
||||
self.thread.daemon = True
|
||||
self.thread.start()
|
||||
print(f"🔍 Memory monitoring started (interval: {interval}s)")
|
||||
|
||||
def stop_monitoring(self):
|
||||
"""Stop monitoring and save results"""
|
||||
self.running = False
|
||||
if self.thread:
|
||||
self.thread.join()
|
||||
|
||||
# Get tracemalloc snapshot
|
||||
snapshot = tracemalloc.take_snapshot()
|
||||
top_stats = snapshot.statistics('lineno')
|
||||
|
||||
# Save detailed results
|
||||
results = {
|
||||
'timeline': self.data,
|
||||
'top_memory_allocations': [
|
||||
{
|
||||
'file': stat.traceback.format()[0],
|
||||
'size_mb': stat.size / 1024 / 1024,
|
||||
'count': stat.count
|
||||
}
|
||||
for stat in top_stats[:20] # Top 20 allocations
|
||||
],
|
||||
'summary': {
|
||||
'peak_rss_gb': max([d['rss_gb'] for d in self.data]) if self.data else 0,
|
||||
'peak_vram_gb': max([d['vram_gb'] for d in self.data]) if self.data else 0,
|
||||
'total_samples': len(self.data)
|
||||
}
|
||||
}
|
||||
|
||||
with open(self.output_file, 'w') as f:
|
||||
json.dump(results, f, indent=2)
|
||||
|
||||
tracemalloc.stop()
|
||||
print(f"📊 Memory profile saved to {self.output_file}")
|
||||
|
||||
def _monitor_loop(self, interval: float):
|
||||
"""Continuous monitoring loop"""
|
||||
while self.running:
|
||||
try:
|
||||
# System memory
|
||||
memory_info = self.process.memory_info()
|
||||
rss_gb = memory_info.rss / (1024**3)
|
||||
|
||||
# System-wide memory
|
||||
sys_memory = psutil.virtual_memory()
|
||||
sys_used_gb = (sys_memory.total - sys_memory.available) / (1024**3)
|
||||
sys_available_gb = sys_memory.available / (1024**3)
|
||||
|
||||
# GPU memory (if available)
|
||||
vram_gb = 0
|
||||
vram_free_gb = 0
|
||||
try:
|
||||
result = subprocess.run(['nvidia-smi', '--query-gpu=memory.used,memory.free',
|
||||
'--format=csv,noheader,nounits'],
|
||||
capture_output=True, text=True, timeout=5)
|
||||
if result.returncode == 0:
|
||||
lines = result.stdout.strip().split('\n')
|
||||
if lines and lines[0]:
|
||||
used, free = lines[0].split(', ')
|
||||
vram_gb = float(used) / 1024
|
||||
vram_free_gb = float(free) / 1024
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
# Tracemalloc current usage
|
||||
try:
|
||||
current, peak = tracemalloc.get_traced_memory()
|
||||
traced_mb = current / (1024**2)
|
||||
except Exception:
|
||||
traced_mb = 0
|
||||
|
||||
data_point = {
|
||||
'timestamp': time.time(),
|
||||
'rss_gb': rss_gb,
|
||||
'vram_gb': vram_gb,
|
||||
'vram_free_gb': vram_free_gb,
|
||||
'sys_used_gb': sys_used_gb,
|
||||
'sys_available_gb': sys_available_gb,
|
||||
'traced_mb': traced_mb
|
||||
}
|
||||
|
||||
self.data.append(data_point)
|
||||
|
||||
# Print periodic updates and save partial data
|
||||
if len(self.data) % 10 == 0: # Every 10 samples
|
||||
print(f"🔍 Memory: RSS={rss_gb:.2f}GB, VRAM={vram_gb:.2f}GB, Sys={sys_used_gb:.1f}GB")
|
||||
|
||||
# Save partial data every 30 samples in case of crash
|
||||
if len(self.data) % 30 == 0:
|
||||
self._save_partial_data()
|
||||
|
||||
except Exception as e:
|
||||
print(f"Monitoring error: {e}")
|
||||
|
||||
time.sleep(interval)
|
||||
|
||||
def _save_partial_data(self):
|
||||
"""Save partial data to prevent loss on crash"""
|
||||
try:
|
||||
partial_file = f"memory_profile_partial_{self.checkpoint_counter}.json"
|
||||
with open(partial_file, 'w') as f:
|
||||
json.dump({
|
||||
'timeline': self.data,
|
||||
'status': 'partial_save',
|
||||
'samples': len(self.data)
|
||||
}, f, indent=2)
|
||||
self.checkpoint_counter += 1
|
||||
except Exception as e:
|
||||
print(f"Failed to save partial data: {e}")
|
||||
|
||||
def log_checkpoint(self, checkpoint_name: str):
|
||||
"""Log a specific checkpoint"""
|
||||
if self.data:
|
||||
self.data[-1]['checkpoint'] = checkpoint_name
|
||||
latest = self.data[-1]
|
||||
print(f"📍 CHECKPOINT [{checkpoint_name}]: RSS={latest['rss_gb']:.2f}GB, VRAM={latest['vram_gb']:.2f}GB")
|
||||
|
||||
# Save checkpoint data immediately
|
||||
self._save_partial_data()
|
||||
|
||||
def run_with_profiling(config_path: str):
|
||||
"""Run the VR180 matting with memory profiling"""
|
||||
profiler = MemoryProfiler("memory_profile_detailed.json")
|
||||
|
||||
try:
|
||||
# Start monitoring
|
||||
profiler.start_monitoring(interval=2.0) # Sample every 2 seconds
|
||||
|
||||
# Log initial state
|
||||
profiler.log_checkpoint("STARTUP")
|
||||
|
||||
# Import after starting profiler to catch import memory usage
|
||||
print("Importing VR180 processor...")
|
||||
from vr180_matting.vr180_processor import VR180Processor
|
||||
from vr180_matting.config import VR180Config
|
||||
|
||||
profiler.log_checkpoint("IMPORTS_COMPLETE")
|
||||
|
||||
# Load config
|
||||
print(f"Loading config from {config_path}")
|
||||
config = VR180Config.from_yaml(config_path)
|
||||
|
||||
profiler.log_checkpoint("CONFIG_LOADED")
|
||||
|
||||
# Initialize processor
|
||||
print("Initializing VR180 processor...")
|
||||
processor = VR180Processor(config)
|
||||
|
||||
profiler.log_checkpoint("PROCESSOR_INITIALIZED")
|
||||
|
||||
# Force garbage collection
|
||||
gc.collect()
|
||||
profiler.log_checkpoint("INITIAL_GC_COMPLETE")
|
||||
|
||||
# Run processing
|
||||
print("Starting VR180 processing...")
|
||||
processor.process_video()
|
||||
|
||||
profiler.log_checkpoint("PROCESSING_COMPLETE")
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Error during processing: {e}")
|
||||
profiler.log_checkpoint(f"ERROR: {str(e)}")
|
||||
raise
|
||||
finally:
|
||||
# Stop monitoring and save results
|
||||
profiler.stop_monitoring()
|
||||
|
||||
# Print summary
|
||||
print("\n" + "="*60)
|
||||
print("MEMORY PROFILING SUMMARY")
|
||||
print("="*60)
|
||||
|
||||
if profiler.data:
|
||||
peak_rss = max([d['rss_gb'] for d in profiler.data])
|
||||
peak_vram = max([d['vram_gb'] for d in profiler.data])
|
||||
|
||||
print(f"Peak RSS Memory: {peak_rss:.2f} GB")
|
||||
print(f"Peak VRAM Usage: {peak_vram:.2f} GB")
|
||||
print(f"Total Samples: {len(profiler.data)}")
|
||||
|
||||
# Show checkpoints
|
||||
checkpoints = [d for d in profiler.data if 'checkpoint' in d]
|
||||
if checkpoints:
|
||||
print(f"\nCheckpoints ({len(checkpoints)}):")
|
||||
for cp in checkpoints:
|
||||
print(f" {cp['checkpoint']}: RSS={cp['rss_gb']:.2f}GB, VRAM={cp['vram_gb']:.2f}GB")
|
||||
|
||||
print(f"\nDetailed profile saved to: {profiler.output_file}")
|
||||
|
||||
def main():
|
||||
if len(sys.argv) != 2:
|
||||
print("Usage: python memory_profiler_script.py <config.yaml>")
|
||||
print("\nThis script runs VR180 matting with detailed memory profiling")
|
||||
print("It will:")
|
||||
print("- Monitor RSS, VRAM, and system memory every 2 seconds")
|
||||
print("- Track memory allocations with tracemalloc")
|
||||
print("- Log checkpoints at key processing stages")
|
||||
print("- Save detailed JSON report for analysis")
|
||||
sys.exit(1)
|
||||
|
||||
config_path = sys.argv[1]
|
||||
|
||||
if not Path(config_path).exists():
|
||||
print(f"❌ Config file not found: {config_path}")
|
||||
sys.exit(1)
|
||||
|
||||
print("🚀 Starting VR180 Memory Profiling")
|
||||
print(f"Config: {config_path}")
|
||||
print("="*60)
|
||||
|
||||
run_with_profiling(config_path)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
125
quick_memory_check.py
Normal file
125
quick_memory_check.py
Normal file
@@ -0,0 +1,125 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Quick memory and system check before running full pipeline
|
||||
"""
|
||||
|
||||
import psutil
|
||||
import subprocess
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
def check_system():
|
||||
"""Check system resources before starting"""
|
||||
print("🔍 SYSTEM RESOURCE CHECK")
|
||||
print("=" * 50)
|
||||
|
||||
# Memory info
|
||||
memory = psutil.virtual_memory()
|
||||
print(f"📊 RAM:")
|
||||
print(f" Total: {memory.total / (1024**3):.1f} GB")
|
||||
print(f" Available: {memory.available / (1024**3):.1f} GB")
|
||||
print(f" Used: {(memory.total - memory.available) / (1024**3):.1f} GB ({memory.percent:.1f}%)")
|
||||
|
||||
# GPU info
|
||||
try:
|
||||
result = subprocess.run(['nvidia-smi', '--query-gpu=name,memory.total,memory.used,memory.free',
|
||||
'--format=csv,noheader,nounits'],
|
||||
capture_output=True, text=True, timeout=10)
|
||||
if result.returncode == 0:
|
||||
lines = result.stdout.strip().split('\n')
|
||||
print(f"\n🎮 GPU:")
|
||||
for i, line in enumerate(lines):
|
||||
if line.strip():
|
||||
parts = line.split(', ')
|
||||
if len(parts) >= 4:
|
||||
name, total, used, free = parts[:4]
|
||||
total_gb = float(total) / 1024
|
||||
used_gb = float(used) / 1024
|
||||
free_gb = float(free) / 1024
|
||||
print(f" GPU {i}: {name}")
|
||||
print(f" VRAM: {used_gb:.1f}/{total_gb:.1f} GB ({used_gb/total_gb*100:.1f}% used)")
|
||||
print(f" Free: {free_gb:.1f} GB")
|
||||
except Exception as e:
|
||||
print(f"\n⚠️ Could not get GPU info: {e}")
|
||||
|
||||
# Disk space
|
||||
disk = psutil.disk_usage('/')
|
||||
print(f"\n💾 Disk (/):")
|
||||
print(f" Total: {disk.total / (1024**3):.1f} GB")
|
||||
print(f" Used: {disk.used / (1024**3):.1f} GB ({disk.used/disk.total*100:.1f}%)")
|
||||
print(f" Free: {disk.free / (1024**3):.1f} GB")
|
||||
|
||||
# Check config file
|
||||
if len(sys.argv) > 1:
|
||||
config_path = sys.argv[1]
|
||||
if Path(config_path).exists():
|
||||
print(f"\n✅ Config file found: {config_path}")
|
||||
|
||||
# Try to load and show key settings
|
||||
try:
|
||||
import yaml
|
||||
with open(config_path, 'r') as f:
|
||||
config = yaml.safe_load(f)
|
||||
|
||||
print(f"📋 Key Settings:")
|
||||
if 'processing' in config:
|
||||
proc = config['processing']
|
||||
print(f" Chunk size: {proc.get('chunk_size', 'default')}")
|
||||
print(f" Scale factor: {proc.get('scale_factor', 'default')}")
|
||||
|
||||
if 'hardware' in config:
|
||||
hw = config['hardware']
|
||||
print(f" Max VRAM: {hw.get('max_vram_gb', 'default')} GB")
|
||||
|
||||
if 'input' in config:
|
||||
inp = config['input']
|
||||
video_path = inp.get('video_path', '')
|
||||
if video_path and Path(video_path).exists():
|
||||
size_gb = Path(video_path).stat().st_size / (1024**3)
|
||||
print(f" Input video: {video_path} ({size_gb:.1f} GB)")
|
||||
else:
|
||||
print(f" ⚠️ Input video not found: {video_path}")
|
||||
|
||||
except Exception as e:
|
||||
print(f" ⚠️ Could not parse config: {e}")
|
||||
else:
|
||||
print(f"\n❌ Config file not found: {config_path}")
|
||||
return False
|
||||
|
||||
# Memory safety warnings
|
||||
print(f"\n⚠️ MEMORY SAFETY CHECKS:")
|
||||
available_gb = memory.available / (1024**3)
|
||||
|
||||
if available_gb < 10:
|
||||
print(f" 🔴 LOW MEMORY: Only {available_gb:.1f}GB available")
|
||||
print(" Consider: reducing chunk_size or scale_factor")
|
||||
return False
|
||||
elif available_gb < 20:
|
||||
print(f" 🟡 MODERATE MEMORY: {available_gb:.1f}GB available")
|
||||
print(" Recommend: chunk_size ≤ 300, scale_factor ≤ 0.5")
|
||||
else:
|
||||
print(f" 🟢 GOOD MEMORY: {available_gb:.1f}GB available")
|
||||
|
||||
print(f"\n" + "=" * 50)
|
||||
return True
|
||||
|
||||
def main():
|
||||
if len(sys.argv) != 2:
|
||||
print("Usage: python quick_memory_check.py <config.yaml>")
|
||||
print("\nThis checks system resources before running VR180 matting")
|
||||
sys.exit(1)
|
||||
|
||||
safe_to_run = check_system()
|
||||
|
||||
if safe_to_run:
|
||||
print("✅ System check passed - safe to run VR180 matting")
|
||||
print("\nTo run with memory profiling:")
|
||||
print(f" python memory_profiler_script.py {sys.argv[1]}")
|
||||
print("\nTo run normally:")
|
||||
print(f" vr180-matting {sys.argv[1]}")
|
||||
else:
|
||||
print("❌ System check failed - address issues before running")
|
||||
sys.exit(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -10,3 +10,6 @@ tqdm>=4.65.0
|
||||
psutil>=5.9.0
|
||||
ffmpeg-python>=0.2.0
|
||||
decord>=0.6.0
|
||||
# GPU acceleration (optional but recommended for stereo validation speedup)
|
||||
# cupy-cuda11x>=12.0.0 # For CUDA 11.x
|
||||
# cupy-cuda12x>=12.0.0 # For CUDA 12.x - uncomment appropriate version
|
||||
@@ -18,6 +18,28 @@ pip install -r requirements.txt
|
||||
echo "📹 Installing decord for video processing..."
|
||||
pip install decord
|
||||
|
||||
# Install CuPy for GPU acceleration of stereo validation
|
||||
echo "🚀 Installing CuPy for GPU acceleration..."
|
||||
# Auto-detect CUDA version and install appropriate CuPy
|
||||
python -c "
|
||||
import torch
|
||||
if torch.cuda.is_available():
|
||||
cuda_version = torch.version.cuda
|
||||
print(f'CUDA version detected: {cuda_version}')
|
||||
if cuda_version.startswith('11.'):
|
||||
import subprocess
|
||||
subprocess.run(['pip', 'install', 'cupy-cuda11x>=12.0.0'])
|
||||
print('Installed CuPy for CUDA 11.x')
|
||||
elif cuda_version.startswith('12.'):
|
||||
import subprocess
|
||||
subprocess.run(['pip', 'install', 'cupy-cuda12x>=12.0.0'])
|
||||
print('Installed CuPy for CUDA 12.x')
|
||||
else:
|
||||
print(f'Unsupported CUDA version: {cuda_version}')
|
||||
else:
|
||||
print('CUDA not available, skipping CuPy installation')
|
||||
"
|
||||
|
||||
# Install SAM2 separately (not on PyPI)
|
||||
echo "🎯 Installing SAM2..."
|
||||
pip install git+https://github.com/facebookresearch/segment-anything-2.git
|
||||
|
||||
139
test_inter_chunk_cleanup.py
Normal file
139
test_inter_chunk_cleanup.py
Normal file
@@ -0,0 +1,139 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Test script to verify inter-chunk cleanup properly destroys models
|
||||
"""
|
||||
|
||||
import psutil
|
||||
import gc
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
def get_memory_usage():
|
||||
"""Get current memory usage in GB"""
|
||||
process = psutil.Process()
|
||||
return process.memory_info().rss / (1024**3)
|
||||
|
||||
def test_inter_chunk_cleanup():
|
||||
"""Test that models are properly destroyed between chunks"""
|
||||
|
||||
print("🧪 TESTING INTER-CHUNK CLEANUP")
|
||||
print("=" * 50)
|
||||
|
||||
baseline_memory = get_memory_usage()
|
||||
print(f"📊 Baseline memory: {baseline_memory:.2f} GB")
|
||||
|
||||
# Import and create processor
|
||||
print("\n1️⃣ Creating processor...")
|
||||
from vr180_matting.config import VR180Config
|
||||
from vr180_matting.vr180_processor import VR180Processor
|
||||
|
||||
config = VR180Config.from_yaml('config.yaml')
|
||||
processor = VR180Processor(config)
|
||||
|
||||
init_memory = get_memory_usage()
|
||||
print(f"📊 After processor init: {init_memory:.2f} GB (+{init_memory - baseline_memory:.2f} GB)")
|
||||
|
||||
# Simulate chunk processing (just trigger model loading)
|
||||
print("\n2️⃣ Simulating chunk 0 processing...")
|
||||
|
||||
# Test 1: Force YOLO model loading
|
||||
try:
|
||||
detector = processor.detector
|
||||
detector._load_model() # Force load
|
||||
yolo_memory = get_memory_usage()
|
||||
print(f"📊 After YOLO load: {yolo_memory:.2f} GB (+{yolo_memory - init_memory:.2f} GB)")
|
||||
except Exception as e:
|
||||
print(f"❌ YOLO loading failed: {e}")
|
||||
yolo_memory = init_memory
|
||||
|
||||
# Test 2: Force SAM2 model loading
|
||||
try:
|
||||
sam2_model = processor.sam2_model
|
||||
sam2_model._load_model(sam2_model.model_cfg, sam2_model.checkpoint_path)
|
||||
sam2_memory = get_memory_usage()
|
||||
print(f"📊 After SAM2 load: {sam2_memory:.2f} GB (+{sam2_memory - yolo_memory:.2f} GB)")
|
||||
except Exception as e:
|
||||
print(f"❌ SAM2 loading failed: {e}")
|
||||
sam2_memory = yolo_memory
|
||||
|
||||
total_model_memory = sam2_memory - init_memory
|
||||
print(f"📊 Total model memory: {total_model_memory:.2f} GB")
|
||||
|
||||
# Test 3: Inter-chunk cleanup
|
||||
print("\n3️⃣ Testing inter-chunk cleanup...")
|
||||
processor._complete_inter_chunk_cleanup(chunk_idx=0)
|
||||
|
||||
cleanup_memory = get_memory_usage()
|
||||
cleanup_improvement = sam2_memory - cleanup_memory
|
||||
print(f"📊 After cleanup: {cleanup_memory:.2f} GB (-{cleanup_improvement:.2f} GB freed)")
|
||||
|
||||
# Test 4: Verify models reload fresh
|
||||
print("\n4️⃣ Testing fresh model reload...")
|
||||
|
||||
# Check YOLO state
|
||||
yolo_reloaded = processor.detector.model is None
|
||||
print(f"🔍 YOLO model destroyed: {'✅ YES' if yolo_reloaded else '❌ NO'}")
|
||||
|
||||
# Check SAM2 state
|
||||
sam2_reloaded = not processor.sam2_model._model_loaded or processor.sam2_model.predictor is None
|
||||
print(f"🔍 SAM2 model destroyed: {'✅ YES' if sam2_reloaded else '❌ NO'}")
|
||||
|
||||
# Test 5: Force reload to verify they work
|
||||
print("\n5️⃣ Testing model reload...")
|
||||
try:
|
||||
# Force YOLO reload
|
||||
processor.detector._load_model()
|
||||
yolo_reload_memory = get_memory_usage()
|
||||
|
||||
# Force SAM2 reload
|
||||
processor.sam2_model._load_model(processor.sam2_model.model_cfg, processor.sam2_model.checkpoint_path)
|
||||
sam2_reload_memory = get_memory_usage()
|
||||
|
||||
reload_growth = sam2_reload_memory - cleanup_memory
|
||||
print(f"📊 After reload: {sam2_reload_memory:.2f} GB (+{reload_growth:.2f} GB)")
|
||||
|
||||
if abs(reload_growth - total_model_memory) < 1.0: # Within 1GB
|
||||
print("✅ Models reloaded with similar memory usage (good)")
|
||||
else:
|
||||
print("⚠️ Model reload memory differs significantly")
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Model reload failed: {e}")
|
||||
|
||||
# Final summary
|
||||
print(f"\n📊 SUMMARY:")
|
||||
print(f" Baseline → Peak: {baseline_memory:.2f}GB → {sam2_memory:.2f}GB")
|
||||
print(f" Peak → Cleanup: {sam2_memory:.2f}GB → {cleanup_memory:.2f}GB")
|
||||
print(f" Memory freed: {cleanup_improvement:.2f}GB")
|
||||
print(f" Models destroyed: YOLO={yolo_reloaded}, SAM2={sam2_reloaded}")
|
||||
|
||||
if cleanup_improvement > total_model_memory * 0.5: # Freed >50% of model memory
|
||||
print("✅ Inter-chunk cleanup working effectively")
|
||||
return True
|
||||
else:
|
||||
print("❌ Inter-chunk cleanup not freeing enough memory")
|
||||
return False
|
||||
|
||||
def main():
|
||||
if len(sys.argv) != 2:
|
||||
print("Usage: python test_inter_chunk_cleanup.py <config.yaml>")
|
||||
sys.exit(1)
|
||||
|
||||
config_path = sys.argv[1]
|
||||
if not Path(config_path).exists():
|
||||
print(f"Config file not found: {config_path}")
|
||||
sys.exit(1)
|
||||
|
||||
success = test_inter_chunk_cleanup()
|
||||
|
||||
if success:
|
||||
print(f"\n🎉 SUCCESS: Inter-chunk cleanup is working!")
|
||||
print(f"💡 This should prevent 15-20GB model accumulation between chunks")
|
||||
else:
|
||||
print(f"\n❌ FAILURE: Inter-chunk cleanup needs improvement")
|
||||
print(f"💡 Check model destruction logic in _complete_inter_chunk_cleanup")
|
||||
|
||||
return 0 if success else 1
|
||||
|
||||
if __name__ == "__main__":
|
||||
sys.exit(main())
|
||||
@@ -29,6 +29,11 @@ class MattingConfig:
|
||||
fp16: bool = True
|
||||
sam2_model_cfg: str = "sam2.1_hiera_l"
|
||||
sam2_checkpoint: str = "segment-anything-2/checkpoints/sam2.1_hiera_large.pt"
|
||||
# Det-SAM2 optimizations
|
||||
continuous_correction: bool = True
|
||||
correction_interval: int = 60 # Add correction prompts every N frames
|
||||
frame_release_interval: int = 50 # Release old frames every N frames
|
||||
frame_window_size: int = 30 # Keep N frames in memory
|
||||
|
||||
|
||||
@dataclass
|
||||
|
||||
@@ -1,6 +1,4 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
from ultralytics import YOLO
|
||||
from typing import List, Tuple, Dict, Any
|
||||
import cv2
|
||||
|
||||
@@ -13,14 +11,23 @@ class YOLODetector:
|
||||
self.confidence_threshold = confidence_threshold
|
||||
self.device = device
|
||||
self.model = None
|
||||
self._load_model()
|
||||
# Don't load model during init - load lazily when first used
|
||||
|
||||
def _load_model(self):
|
||||
"""Load YOLOv8 model"""
|
||||
"""Load YOLOv8 model lazily"""
|
||||
if self.model is not None:
|
||||
return # Already loaded
|
||||
|
||||
try:
|
||||
# Import heavy dependencies only when needed
|
||||
import torch
|
||||
from ultralytics import YOLO
|
||||
|
||||
self.model = YOLO(f"{self.model_name}.pt")
|
||||
if self.device == "cuda" and torch.cuda.is_available():
|
||||
self.model.to("cuda")
|
||||
|
||||
print(f"🎯 Loaded YOLO model: {self.model_name}")
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Failed to load YOLO model {self.model_name}: {e}")
|
||||
|
||||
@@ -34,8 +41,9 @@ class YOLODetector:
|
||||
Returns:
|
||||
List of detection dictionaries with bbox, confidence, and class info
|
||||
"""
|
||||
# Load model lazily on first use
|
||||
if self.model is None:
|
||||
raise RuntimeError("YOLO model not loaded")
|
||||
self._load_model()
|
||||
|
||||
results = self.model(frame, verbose=False)
|
||||
detections = []
|
||||
|
||||
@@ -7,13 +7,18 @@ import warnings
|
||||
import os
|
||||
import tempfile
|
||||
import shutil
|
||||
import gc
|
||||
|
||||
try:
|
||||
from sam2.build_sam import build_sam2_video_predictor
|
||||
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
||||
SAM2_AVAILABLE = True
|
||||
except ImportError:
|
||||
SAM2_AVAILABLE = False
|
||||
# Check SAM2 availability without importing heavy modules
|
||||
def _check_sam2_available():
|
||||
try:
|
||||
import sam2
|
||||
return True
|
||||
except ImportError:
|
||||
return False
|
||||
|
||||
SAM2_AVAILABLE = _check_sam2_available()
|
||||
if not SAM2_AVAILABLE:
|
||||
warnings.warn("SAM2 not available. Please install sam2 package.")
|
||||
|
||||
|
||||
@@ -32,16 +37,25 @@ class SAM2VideoMatting:
|
||||
self.device = device
|
||||
self.memory_offload = memory_offload
|
||||
self.fp16 = fp16
|
||||
self.model_cfg = model_cfg
|
||||
self.checkpoint_path = checkpoint_path
|
||||
self.predictor = None
|
||||
self.inference_state = None
|
||||
self.video_segments = {}
|
||||
self.temp_video_path = None
|
||||
|
||||
self._load_model(model_cfg, checkpoint_path)
|
||||
# Don't load model during init - load lazily when needed
|
||||
self._model_loaded = False
|
||||
|
||||
def _load_model(self, model_cfg: str, checkpoint_path: str):
|
||||
"""Load SAM2 video predictor with optimizations"""
|
||||
"""Load SAM2 video predictor lazily"""
|
||||
if self._model_loaded and self.predictor is not None:
|
||||
return # Already loaded and predictor exists
|
||||
|
||||
try:
|
||||
# Import heavy SAM2 modules only when needed
|
||||
from sam2.build_sam import build_sam2_video_predictor
|
||||
|
||||
# Check for checkpoint in SAM2 repo structure
|
||||
if not Path(checkpoint_path).exists():
|
||||
# Try in segment-anything-2/checkpoints/
|
||||
@@ -60,6 +74,7 @@ class SAM2VideoMatting:
|
||||
if sam2_repo_path.exists():
|
||||
checkpoint_path = str(sam2_repo_path)
|
||||
|
||||
print(f"🎯 Loading SAM2 model: {model_cfg}")
|
||||
# Use SAM2's build_sam2_video_predictor which returns the predictor directly
|
||||
# The predictor IS the model - no .model attribute needed
|
||||
self.predictor = build_sam2_video_predictor(
|
||||
@@ -68,13 +83,17 @@ class SAM2VideoMatting:
|
||||
device=self.device
|
||||
)
|
||||
|
||||
self._model_loaded = True
|
||||
print(f"✅ SAM2 model loaded successfully")
|
||||
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Failed to load SAM2 model: {e}")
|
||||
|
||||
def init_video_state(self, video_frames: List[np.ndarray] = None, video_path: str = None) -> None:
|
||||
"""Initialize video inference state"""
|
||||
if self.predictor is None:
|
||||
raise RuntimeError("SAM2 model not loaded")
|
||||
# Load model lazily on first use
|
||||
if not self._model_loaded:
|
||||
self._load_model(self.model_cfg, self.checkpoint_path)
|
||||
|
||||
if video_path is not None:
|
||||
# Use video path directly (SAM2's preferred method)
|
||||
@@ -148,13 +167,16 @@ class SAM2VideoMatting:
|
||||
|
||||
return object_ids
|
||||
|
||||
def propagate_masks(self, start_frame: int = 0, max_frames: Optional[int] = None) -> Dict[int, Dict[int, np.ndarray]]:
|
||||
def propagate_masks(self, start_frame: int = 0, max_frames: Optional[int] = None,
|
||||
frame_release_interval: int = 50, frame_window_size: int = 30) -> Dict[int, Dict[int, np.ndarray]]:
|
||||
"""
|
||||
Propagate masks through video
|
||||
Propagate masks through video with Det-SAM2 style memory management
|
||||
|
||||
Args:
|
||||
start_frame: Starting frame index
|
||||
max_frames: Maximum number of frames to process
|
||||
frame_release_interval: Release old frames every N frames
|
||||
frame_window_size: Keep N frames in memory
|
||||
|
||||
Returns:
|
||||
Dictionary mapping frame_idx -> {obj_id: mask}
|
||||
@@ -178,9 +200,108 @@ class SAM2VideoMatting:
|
||||
|
||||
video_segments[out_frame_idx] = frame_masks
|
||||
|
||||
# Memory management: release old frames periodically
|
||||
if self.memory_offload and out_frame_idx % 100 == 0:
|
||||
self._release_old_frames(out_frame_idx - 50)
|
||||
# Det-SAM2 style memory management: more aggressive frame release
|
||||
if self.memory_offload and out_frame_idx % frame_release_interval == 0:
|
||||
self._release_old_frames(out_frame_idx - frame_window_size)
|
||||
# Optional: Log frame release for monitoring
|
||||
if out_frame_idx % (frame_release_interval * 4) == 0: # Log every 4x release interval
|
||||
print(f"Det-SAM2: Released frames before {out_frame_idx - frame_window_size}, keeping {frame_window_size} frames")
|
||||
|
||||
return video_segments
|
||||
|
||||
def propagate_masks_with_continuous_correction(self,
|
||||
detector,
|
||||
temp_video_path: str,
|
||||
start_frame: int = 0,
|
||||
max_frames: Optional[int] = None,
|
||||
correction_interval: int = 60,
|
||||
frame_release_interval: int = 50,
|
||||
frame_window_size: int = 30) -> Dict[int, Dict[int, np.ndarray]]:
|
||||
"""
|
||||
Det-SAM2 style: Propagate masks with continuous prompt correction
|
||||
|
||||
Args:
|
||||
detector: YOLODetector instance for generating correction prompts
|
||||
temp_video_path: Path to video file for frame access
|
||||
start_frame: Starting frame index
|
||||
max_frames: Maximum number of frames to process
|
||||
correction_interval: Add correction prompts every N frames
|
||||
frame_release_interval: Release old frames every N frames
|
||||
frame_window_size: Keep N frames in memory
|
||||
|
||||
Returns:
|
||||
Dictionary mapping frame_idx -> {obj_id: mask}
|
||||
"""
|
||||
if self.inference_state is None:
|
||||
raise RuntimeError("Video state not initialized")
|
||||
|
||||
video_segments = {}
|
||||
max_frames = max_frames or 10000 # Default limit
|
||||
|
||||
# Open video for accessing frames during propagation
|
||||
cap = cv2.VideoCapture(str(temp_video_path))
|
||||
|
||||
try:
|
||||
for out_frame_idx, out_obj_ids, out_mask_logits in self.predictor.propagate_in_video(
|
||||
self.inference_state,
|
||||
start_frame_idx=start_frame,
|
||||
max_frame_num_to_track=max_frames,
|
||||
reverse=False
|
||||
):
|
||||
frame_masks = {}
|
||||
|
||||
for i, out_obj_id in enumerate(out_obj_ids):
|
||||
mask = (out_mask_logits[i] > 0.0).cpu().numpy()
|
||||
frame_masks[out_obj_id] = mask
|
||||
|
||||
video_segments[out_frame_idx] = frame_masks
|
||||
|
||||
# Det-SAM2 optimization: Add correction prompts at keyframes
|
||||
if (out_frame_idx % correction_interval == 0 and
|
||||
out_frame_idx > start_frame and
|
||||
out_frame_idx < max_frames - 1):
|
||||
|
||||
# Read frame for detection
|
||||
cap.set(cv2.CAP_PROP_POS_FRAMES, out_frame_idx)
|
||||
ret, correction_frame = cap.read()
|
||||
|
||||
if ret:
|
||||
# Run detection on this keyframe
|
||||
detections = detector.detect_persons(correction_frame)
|
||||
|
||||
if detections:
|
||||
# Convert to prompts and add as corrections
|
||||
box_prompts, labels = detector.convert_to_sam_prompts(detections)
|
||||
|
||||
# Add correction prompts (SAM2 will propagate backward)
|
||||
correction_count = 0
|
||||
try:
|
||||
for i, (box, label) in enumerate(zip(box_prompts, labels)):
|
||||
# Use existing object IDs if available, otherwise create new ones
|
||||
obj_id = out_obj_ids[i] if i < len(out_obj_ids) else len(out_obj_ids) + i + 1
|
||||
|
||||
self.predictor.add_new_points_or_box(
|
||||
inference_state=self.inference_state,
|
||||
frame_idx=out_frame_idx,
|
||||
obj_id=obj_id,
|
||||
box=box,
|
||||
)
|
||||
correction_count += 1
|
||||
|
||||
print(f"Det-SAM2: Added {correction_count} correction prompts at frame {out_frame_idx}")
|
||||
|
||||
except Exception as e:
|
||||
warnings.warn(f"Failed to add correction prompt at frame {out_frame_idx}: {e}")
|
||||
|
||||
# Memory management: More aggressive frame release (Det-SAM2 style)
|
||||
if self.memory_offload and out_frame_idx % frame_release_interval == 0:
|
||||
self._release_old_frames(out_frame_idx - frame_window_size)
|
||||
# Optional: Log frame release for monitoring
|
||||
if out_frame_idx % (frame_release_interval * 4) == 0: # Log every 4x release interval
|
||||
print(f"Det-SAM2: Released frames before {out_frame_idx - frame_window_size}, keeping {frame_window_size} frames")
|
||||
|
||||
finally:
|
||||
cap.release()
|
||||
|
||||
return video_segments
|
||||
|
||||
@@ -256,11 +377,23 @@ class SAM2VideoMatting:
|
||||
"""Clean up resources"""
|
||||
if self.inference_state is not None:
|
||||
try:
|
||||
if hasattr(self.predictor, 'cleanup_state'):
|
||||
# Reset SAM2 state first (critical for memory cleanup)
|
||||
if self.predictor is not None and hasattr(self.predictor, 'reset_state'):
|
||||
self.predictor.reset_state(self.inference_state)
|
||||
|
||||
# Fallback to cleanup_state if available
|
||||
elif self.predictor is not None and hasattr(self.predictor, 'cleanup_state'):
|
||||
self.predictor.cleanup_state(self.inference_state)
|
||||
|
||||
# Explicitly delete inference state and video segments
|
||||
del self.inference_state
|
||||
if hasattr(self, 'video_segments') and self.video_segments:
|
||||
del self.video_segments
|
||||
self.video_segments = {}
|
||||
|
||||
except Exception as e:
|
||||
warnings.warn(f"Failed to cleanup SAM2 state: {e}")
|
||||
|
||||
finally:
|
||||
self.inference_state = None
|
||||
|
||||
# Clean up temporary video file
|
||||
@@ -277,6 +410,25 @@ class SAM2VideoMatting:
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
# Explicitly delete predictor for fresh creation next time
|
||||
if self.predictor is not None:
|
||||
try:
|
||||
del self.predictor
|
||||
except Exception as e:
|
||||
warnings.warn(f"Failed to delete predictor: {e}")
|
||||
finally:
|
||||
self.predictor = None
|
||||
|
||||
# Reset model loaded state for fresh reload
|
||||
self._model_loaded = False
|
||||
|
||||
# Force garbage collection (critical for memory leak prevention)
|
||||
gc.collect()
|
||||
|
||||
def __del__(self):
|
||||
"""Destructor to ensure cleanup"""
|
||||
try:
|
||||
self.cleanup()
|
||||
except Exception:
|
||||
# Ignore errors during Python shutdown
|
||||
pass
|
||||
@@ -132,6 +132,26 @@ class VideoProcessor:
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
# Clear OpenCV internal caches
|
||||
try:
|
||||
# Clear OpenCV video capture cache
|
||||
cv2.setUseOptimized(False)
|
||||
cv2.setUseOptimized(True)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
# Clear CuPy caches if available
|
||||
try:
|
||||
import cupy as cp
|
||||
cp._default_memory_pool.free_all_blocks()
|
||||
cp._default_pinned_memory_pool.free_all_blocks()
|
||||
cp.get_default_memory_pool().free_all_blocks()
|
||||
cp.get_default_pinned_memory_pool().free_all_blocks()
|
||||
except ImportError:
|
||||
pass
|
||||
except Exception as e:
|
||||
print(f" Warning: Could not clear CuPy cache: {e}")
|
||||
|
||||
# Force Linux to release memory back to OS
|
||||
if sys.platform == 'linux':
|
||||
try:
|
||||
@@ -367,19 +387,83 @@ class VideoProcessor:
|
||||
# Green screen background
|
||||
return np.full_like(frame, self.config.output.background_color, dtype=np.uint8)
|
||||
|
||||
def merge_chunks_streaming(self, chunk_files: List[Path], output_path: str,
|
||||
overlap_frames: int = 0, audio_source: str = None) -> None:
|
||||
"""
|
||||
Merge processed chunks using streaming approach (no memory accumulation)
|
||||
|
||||
Args:
|
||||
chunk_files: List of chunk result files (.npz)
|
||||
output_path: Final output video path
|
||||
overlap_frames: Number of overlapping frames
|
||||
audio_source: Audio source file for final video
|
||||
"""
|
||||
from .streaming_video_writer import StreamingVideoWriter
|
||||
|
||||
if not chunk_files:
|
||||
raise ValueError("No chunk files to merge")
|
||||
|
||||
print(f"🎬 Streaming merge: {len(chunk_files)} chunks → {output_path}")
|
||||
|
||||
# Initialize streaming writer
|
||||
writer = StreamingVideoWriter(
|
||||
output_path=output_path,
|
||||
fps=self.video_info['fps'],
|
||||
audio_source=audio_source
|
||||
)
|
||||
|
||||
try:
|
||||
# Process each chunk without accumulation
|
||||
for i, chunk_file in enumerate(chunk_files):
|
||||
print(f"📼 Processing chunk {i+1}/{len(chunk_files)}: {chunk_file.name}")
|
||||
|
||||
# Load chunk (this is the only copy in memory)
|
||||
chunk_data = np.load(str(chunk_file))
|
||||
frames = chunk_data['frames'].tolist() # Convert to list of arrays
|
||||
chunk_data.close()
|
||||
|
||||
# Write chunk with streaming writer
|
||||
writer.write_chunk(
|
||||
frames=frames,
|
||||
chunk_index=i,
|
||||
overlap_frames=overlap_frames if i > 0 else 0,
|
||||
blend_with_previous=(i > 0 and overlap_frames > 0)
|
||||
)
|
||||
|
||||
# Immediately free memory
|
||||
del frames, chunk_data
|
||||
|
||||
# Delete chunk file to free disk space
|
||||
try:
|
||||
chunk_file.unlink()
|
||||
print(f" 🗑️ Deleted {chunk_file.name}")
|
||||
except Exception as e:
|
||||
print(f" ⚠️ Could not delete {chunk_file.name}: {e}")
|
||||
|
||||
# Aggressive cleanup every chunk
|
||||
self._aggressive_memory_cleanup(f"After processing chunk {i}")
|
||||
|
||||
# Finalize the video
|
||||
writer.finalize()
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Streaming merge failed: {e}")
|
||||
writer.cleanup()
|
||||
raise
|
||||
|
||||
print(f"✅ Streaming merge complete: {output_path}")
|
||||
|
||||
def merge_overlapping_chunks(self,
|
||||
chunk_results: List[List[np.ndarray]],
|
||||
overlap_frames: int) -> List[np.ndarray]:
|
||||
"""
|
||||
Merge overlapping chunks with blending in overlap regions
|
||||
|
||||
Args:
|
||||
chunk_results: List of chunk results
|
||||
overlap_frames: Number of overlapping frames
|
||||
|
||||
Returns:
|
||||
Merged frame sequence
|
||||
Legacy merge method - DEPRECATED due to memory accumulation
|
||||
Use merge_chunks_streaming() instead for memory efficiency
|
||||
"""
|
||||
import warnings
|
||||
warnings.warn("merge_overlapping_chunks() is deprecated due to memory accumulation. Use merge_chunks_streaming()",
|
||||
DeprecationWarning, stacklevel=2)
|
||||
|
||||
if len(chunk_results) == 1:
|
||||
return chunk_results[0]
|
||||
|
||||
@@ -620,25 +704,23 @@ class VideoProcessor:
|
||||
if self.memory_manager.should_emergency_cleanup():
|
||||
self.memory_manager.emergency_cleanup()
|
||||
|
||||
# Load and merge chunks from disk
|
||||
print("\nLoading and merging chunks...")
|
||||
chunk_results = []
|
||||
for chunk_file in chunk_files:
|
||||
print(f"Loading {chunk_file.name}...")
|
||||
chunk_data = np.load(str(chunk_file))
|
||||
chunk_results.append(chunk_data['frames'])
|
||||
chunk_data.close() # Close the file
|
||||
# Use streaming merge to avoid memory accumulation (fixes OOM)
|
||||
print("\n🎬 Using streaming merge (no memory accumulation)...")
|
||||
|
||||
# Merge chunks
|
||||
final_frames = self.merge_overlapping_chunks(chunk_results, overlap_frames)
|
||||
# Determine audio source for final video
|
||||
audio_source = None
|
||||
if self.config.output.preserve_audio and Path(self.config.input.video_path).exists():
|
||||
audio_source = self.config.input.video_path
|
||||
|
||||
# Free chunk results after merging
|
||||
del chunk_results
|
||||
self._aggressive_memory_cleanup("after merging chunks")
|
||||
# Stream merge chunks directly to output (no memory accumulation)
|
||||
self.merge_chunks_streaming(
|
||||
chunk_files=chunk_files,
|
||||
output_path=self.config.output.path,
|
||||
overlap_frames=overlap_frames,
|
||||
audio_source=audio_source
|
||||
)
|
||||
|
||||
# Save results
|
||||
print(f"Saving {len(final_frames)} processed frames...")
|
||||
self.save_video(final_frames, self.config.output.path)
|
||||
print("✅ Streaming merge complete - no memory accumulation!")
|
||||
|
||||
# Calculate final statistics
|
||||
self.processing_stats['end_time'] = time.time()
|
||||
|
||||
@@ -3,6 +3,7 @@ import numpy as np
|
||||
from typing import List, Dict, Any, Optional, Tuple
|
||||
from pathlib import Path
|
||||
import warnings
|
||||
import torch
|
||||
|
||||
from .video_processor import VideoProcessor
|
||||
from .config import VR180Config
|
||||
@@ -89,7 +90,7 @@ class VR180Processor(VideoProcessor):
|
||||
|
||||
def combine_sbs_frame(self, left_eye: np.ndarray, right_eye: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Combine left and right eye frames back into side-by-side format
|
||||
Combine left and right eye frames back into side-by-side format with GPU acceleration
|
||||
|
||||
Args:
|
||||
left_eye: Left eye frame
|
||||
@@ -98,14 +99,44 @@ class VR180Processor(VideoProcessor):
|
||||
Returns:
|
||||
Combined SBS frame
|
||||
"""
|
||||
try:
|
||||
import cupy as cp
|
||||
|
||||
# Transfer to GPU for faster combination
|
||||
left_gpu = cp.asarray(left_eye)
|
||||
right_gpu = cp.asarray(right_eye)
|
||||
|
||||
# Ensure frames have same height
|
||||
if left_gpu.shape[0] != right_gpu.shape[0]:
|
||||
target_height = min(left_gpu.shape[0], right_gpu.shape[0])
|
||||
# Note: OpenCV resize not available in CuPy, fall back to CPU for resize
|
||||
left_eye = cv2.resize(left_eye, (left_eye.shape[1], target_height))
|
||||
right_eye = cv2.resize(right_eye, (right_eye.shape[1], target_height))
|
||||
left_gpu = cp.asarray(left_eye)
|
||||
right_gpu = cp.asarray(right_eye)
|
||||
|
||||
# Combine horizontally on GPU (much faster for large arrays)
|
||||
combined_gpu = cp.hstack([left_gpu, right_gpu])
|
||||
|
||||
# Transfer back to CPU and ensure we get a copy, not a view
|
||||
combined = cp.asnumpy(combined_gpu).copy()
|
||||
|
||||
# Free GPU memory immediately
|
||||
del left_gpu, right_gpu, combined_gpu
|
||||
cp._default_memory_pool.free_all_blocks()
|
||||
|
||||
return combined
|
||||
|
||||
except ImportError:
|
||||
# Fallback to CPU NumPy
|
||||
# Ensure frames have same height
|
||||
if left_eye.shape[0] != right_eye.shape[0]:
|
||||
target_height = min(left_eye.shape[0], right_eye.shape[0])
|
||||
left_eye = cv2.resize(left_eye, (left_eye.shape[1], target_height))
|
||||
right_eye = cv2.resize(right_eye, (right_eye.shape[1], target_height))
|
||||
|
||||
# Combine horizontally
|
||||
combined = np.hstack([left_eye, right_eye])
|
||||
# Combine horizontally and ensure we get a copy, not a view
|
||||
combined = np.hstack([left_eye, right_eye]).copy()
|
||||
return combined
|
||||
|
||||
def process_with_disparity_mapping(self,
|
||||
@@ -152,6 +183,10 @@ class VR180Processor(VideoProcessor):
|
||||
with self.memory_manager.memory_monitor(f"left eye chunk {chunk_idx}"):
|
||||
left_matted = self._process_eye_sequence(left_eye_frames, "left", chunk_idx)
|
||||
|
||||
# Free left eye frames after processing (before right eye to save memory)
|
||||
del left_eye_frames
|
||||
self._aggressive_memory_cleanup(f"After left eye processing chunk {chunk_idx}")
|
||||
|
||||
# Process right eye with cross-validation
|
||||
print("Processing right eye with cross-validation...")
|
||||
with self.memory_manager.memory_monitor(f"right eye chunk {chunk_idx}"):
|
||||
@@ -159,6 +194,10 @@ class VR180Processor(VideoProcessor):
|
||||
right_eye_frames, left_matted, "right", chunk_idx
|
||||
)
|
||||
|
||||
# Free right eye frames after processing
|
||||
del right_eye_frames
|
||||
self._aggressive_memory_cleanup(f"After right eye processing chunk {chunk_idx}")
|
||||
|
||||
# Combine results back to SBS format
|
||||
combined_frames = []
|
||||
for left_frame, right_frame in zip(left_matted, right_matted):
|
||||
@@ -169,6 +208,15 @@ class VR180Processor(VideoProcessor):
|
||||
combined = {'left': left_frame, 'right': right_frame}
|
||||
combined_frames.append(combined)
|
||||
|
||||
# Free the individual eye results after combining
|
||||
del left_matted
|
||||
del right_matted
|
||||
self._aggressive_memory_cleanup(f"After combining frames chunk {chunk_idx}")
|
||||
|
||||
# CRITICAL: Complete inter-chunk cleanup to prevent model persistence
|
||||
# This ensures models don't accumulate between chunks
|
||||
self._complete_inter_chunk_cleanup(chunk_idx)
|
||||
|
||||
return combined_frames
|
||||
|
||||
def _process_eye_sequence(self,
|
||||
@@ -332,31 +380,43 @@ class VR180Processor(VideoProcessor):
|
||||
|
||||
# Propagate masks (most expensive operation)
|
||||
self._print_memory_step(f"Before SAM2 propagation ({eye_name} eye, {num_frames} frames)")
|
||||
|
||||
# Use Det-SAM2 continuous correction if enabled
|
||||
if self.config.matting.continuous_correction:
|
||||
video_segments = self.sam2_model.propagate_masks_with_continuous_correction(
|
||||
detector=self.detector,
|
||||
temp_video_path=str(temp_video_path),
|
||||
start_frame=0,
|
||||
max_frames=num_frames,
|
||||
correction_interval=self.config.matting.correction_interval,
|
||||
frame_release_interval=self.config.matting.frame_release_interval,
|
||||
frame_window_size=self.config.matting.frame_window_size
|
||||
)
|
||||
print(f"Used Det-SAM2 continuous correction (interval: {self.config.matting.correction_interval} frames)")
|
||||
else:
|
||||
video_segments = self.sam2_model.propagate_masks(
|
||||
start_frame=0,
|
||||
max_frames=num_frames
|
||||
max_frames=num_frames,
|
||||
frame_release_interval=self.config.matting.frame_release_interval,
|
||||
frame_window_size=self.config.matting.frame_window_size
|
||||
)
|
||||
|
||||
self._print_memory_step(f"After SAM2 propagation ({eye_name} eye)")
|
||||
|
||||
# Apply masks - need to reload frames from temp video since we freed the original frames
|
||||
self._print_memory_step(f"Before reloading frames for mask application ({eye_name} eye)")
|
||||
# Apply masks with streaming approach (no frame accumulation)
|
||||
self._print_memory_step(f"Before streaming mask application ({eye_name} eye)")
|
||||
|
||||
# Read frames back from the temp video for mask application
|
||||
# Process frames one at a time without accumulation
|
||||
cap = cv2.VideoCapture(str(temp_video_path))
|
||||
reloaded_frames = []
|
||||
matted_frames = []
|
||||
|
||||
try:
|
||||
for frame_idx in range(num_frames):
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
break
|
||||
reloaded_frames.append(frame)
|
||||
cap.release()
|
||||
|
||||
self._print_memory_step(f"Reloaded {len(reloaded_frames)} frames for mask application")
|
||||
|
||||
# Apply masks
|
||||
matted_frames = []
|
||||
for frame_idx, frame in enumerate(reloaded_frames):
|
||||
# Apply mask to this single frame
|
||||
if frame_idx in video_segments:
|
||||
frame_masks = video_segments[frame_idx]
|
||||
combined_mask = self.sam2_model.get_combined_mask(frame_masks)
|
||||
@@ -371,10 +431,22 @@ class VR180Processor(VideoProcessor):
|
||||
|
||||
matted_frames.append(matted_frame)
|
||||
|
||||
# Free reloaded frames
|
||||
del reloaded_frames
|
||||
self._aggressive_memory_cleanup(f"After mask application ({eye_name} eye)")
|
||||
# Free the original frame immediately (no accumulation)
|
||||
del frame
|
||||
|
||||
# Periodic cleanup during processing
|
||||
if frame_idx % 100 == 0 and frame_idx > 0:
|
||||
import gc
|
||||
gc.collect()
|
||||
|
||||
finally:
|
||||
cap.release()
|
||||
|
||||
# Free video segments completely
|
||||
del video_segments # This holds processed masks from SAM2
|
||||
self._aggressive_memory_cleanup(f"After streaming mask application ({eye_name} eye)")
|
||||
|
||||
self._print_memory_step(f"Completed streaming mask application ({eye_name} eye)")
|
||||
return matted_frames
|
||||
|
||||
finally:
|
||||
@@ -414,13 +486,17 @@ class VR180Processor(VideoProcessor):
|
||||
left_eye_results, right_matted
|
||||
)
|
||||
|
||||
# CRITICAL: Free the intermediate results to prevent memory accumulation
|
||||
del left_eye_results # Don't keep left eye results after validation
|
||||
del right_matted # Don't keep unvalidated right results
|
||||
|
||||
return validated_results
|
||||
|
||||
def _validate_stereo_consistency(self,
|
||||
left_results: List[np.ndarray],
|
||||
right_results: List[np.ndarray]) -> List[np.ndarray]:
|
||||
"""
|
||||
Validate and correct stereo consistency between left and right eye results
|
||||
Validate and correct stereo consistency between left and right eye results using GPU acceleration
|
||||
|
||||
Args:
|
||||
left_results: Left eye processed frames
|
||||
@@ -429,9 +505,120 @@ class VR180Processor(VideoProcessor):
|
||||
Returns:
|
||||
Validated right eye frames
|
||||
"""
|
||||
print(f"🔍 VALIDATION: Starting stereo consistency check ({len(left_results)} frames)")
|
||||
|
||||
try:
|
||||
import cupy as cp
|
||||
return self._validate_stereo_consistency_gpu(left_results, right_results)
|
||||
except ImportError:
|
||||
print(" Warning: CuPy not available, using CPU validation")
|
||||
return self._validate_stereo_consistency_cpu(left_results, right_results)
|
||||
|
||||
def _validate_stereo_consistency_gpu(self,
|
||||
left_results: List[np.ndarray],
|
||||
right_results: List[np.ndarray]) -> List[np.ndarray]:
|
||||
"""GPU-accelerated batch stereo validation using CuPy with memory-safe batching"""
|
||||
import cupy as cp
|
||||
|
||||
print(" Using GPU acceleration for stereo validation")
|
||||
|
||||
# Process in batches to avoid GPU OOM
|
||||
batch_size = 50 # Process 50 frames at a time (safe for 45GB GPU)
|
||||
total_frames = len(left_results)
|
||||
area_ratios_all = []
|
||||
needs_correction_all = []
|
||||
|
||||
print(f" Processing {total_frames} frames in batches of {batch_size}...")
|
||||
|
||||
for batch_start in range(0, total_frames, batch_size):
|
||||
batch_end = min(batch_start + batch_size, total_frames)
|
||||
batch_frames = batch_end - batch_start
|
||||
|
||||
if batch_start % 100 == 0:
|
||||
print(f" GPU batch {batch_start//batch_size + 1}: frames {batch_start}-{batch_end}")
|
||||
|
||||
# Get batch slices
|
||||
left_batch = left_results[batch_start:batch_end]
|
||||
right_batch = right_results[batch_start:batch_end]
|
||||
|
||||
# Convert batch to GPU
|
||||
left_stack = cp.stack([cp.asarray(frame) for frame in left_batch])
|
||||
right_stack = cp.stack([cp.asarray(frame) for frame in right_batch])
|
||||
|
||||
# Batch calculate mask areas for this batch
|
||||
if left_stack.shape[3] == 4: # Alpha channel
|
||||
left_masks = left_stack[:, :, :, 3] > 0
|
||||
right_masks = right_stack[:, :, :, 3] > 0
|
||||
else: # Green screen detection
|
||||
bg_color = cp.array(self.config.output.background_color)
|
||||
left_diff = cp.abs(left_stack.astype(cp.float32) - bg_color).sum(axis=3)
|
||||
right_diff = cp.abs(right_stack.astype(cp.float32) - bg_color).sum(axis=3)
|
||||
left_masks = left_diff > 30
|
||||
right_masks = right_diff > 30
|
||||
|
||||
# Calculate areas for this batch
|
||||
left_areas = cp.sum(left_masks, axis=(1, 2))
|
||||
right_areas = cp.sum(right_masks, axis=(1, 2))
|
||||
area_ratios = right_areas.astype(cp.float32) / (left_areas.astype(cp.float32) + 1e-6)
|
||||
|
||||
# Find frames needing correction in this batch
|
||||
needs_correction = (area_ratios < 0.5) | (area_ratios > 2.0)
|
||||
|
||||
# Transfer batch results back to CPU and accumulate
|
||||
area_ratios_all.extend(cp.asnumpy(area_ratios))
|
||||
needs_correction_all.extend(cp.asnumpy(needs_correction))
|
||||
|
||||
# Free GPU memory for this batch
|
||||
del left_stack, right_stack, left_masks, right_masks
|
||||
del left_areas, right_areas, area_ratios, needs_correction
|
||||
cp._default_memory_pool.free_all_blocks()
|
||||
|
||||
# CRITICAL: Release ALL CuPy memory back to system after validation
|
||||
try:
|
||||
# Force release of all GPU memory pools
|
||||
cp._default_memory_pool.free_all_blocks()
|
||||
cp._default_pinned_memory_pool.free_all_blocks()
|
||||
|
||||
# Clear CuPy cache completely
|
||||
cp.get_default_memory_pool().free_all_blocks()
|
||||
cp.get_default_pinned_memory_pool().free_all_blocks()
|
||||
|
||||
print(f" CuPy memory pools cleared")
|
||||
except Exception as e:
|
||||
print(f" Warning: Could not clear CuPy memory pools: {e}")
|
||||
|
||||
correction_count = sum(needs_correction_all)
|
||||
print(f" GPU validation complete: {correction_count}/{total_frames} frames need correction")
|
||||
|
||||
# Apply corrections using CPU results
|
||||
validated_frames = []
|
||||
for i, (needs_fix, ratio) in enumerate(zip(needs_correction_all, area_ratios_all)):
|
||||
if i % 100 == 0:
|
||||
print(f" Processing validation results: {i}/{total_frames}")
|
||||
|
||||
if needs_fix:
|
||||
# Apply correction
|
||||
corrected_frame = self._apply_stereo_correction(
|
||||
left_results[i], right_results[i], float(ratio)
|
||||
)
|
||||
validated_frames.append(corrected_frame)
|
||||
else:
|
||||
validated_frames.append(right_results[i])
|
||||
|
||||
print("✅ VALIDATION: GPU stereo consistency check complete")
|
||||
return validated_frames
|
||||
|
||||
def _validate_stereo_consistency_cpu(self,
|
||||
left_results: List[np.ndarray],
|
||||
right_results: List[np.ndarray]) -> List[np.ndarray]:
|
||||
"""CPU fallback for stereo validation"""
|
||||
print(" Using CPU validation (slower)")
|
||||
validated_frames = []
|
||||
|
||||
for i, (left_frame, right_frame) in enumerate(zip(left_results, right_results)):
|
||||
if i % 50 == 0: # Progress every 50 frames
|
||||
print(f" CPU validation progress: {i}/{len(left_results)}")
|
||||
|
||||
# Simple validation: check if mask areas are similar
|
||||
left_mask_area = self._get_mask_area(left_frame)
|
||||
right_mask_area = self._get_mask_area(right_frame)
|
||||
@@ -448,6 +635,7 @@ class VR180Processor(VideoProcessor):
|
||||
else:
|
||||
validated_frames.append(right_frame)
|
||||
|
||||
print("✅ VALIDATION: CPU stereo consistency check complete")
|
||||
return validated_frames
|
||||
|
||||
def _create_empty_masks_from_count(self, num_frames: int, frame_shape: tuple) -> List[np.ndarray]:
|
||||
@@ -465,7 +653,26 @@ class VR180Processor(VideoProcessor):
|
||||
return empty_frames
|
||||
|
||||
def _get_mask_area(self, frame: np.ndarray) -> float:
|
||||
"""Get mask area from processed frame"""
|
||||
"""Get mask area from processed frame using GPU acceleration"""
|
||||
try:
|
||||
import cupy as cp
|
||||
|
||||
# Transfer to GPU
|
||||
frame_gpu = cp.asarray(frame)
|
||||
|
||||
if frame.shape[2] == 4: # Alpha channel
|
||||
mask_gpu = frame_gpu[:, :, 3] > 0
|
||||
else: # Green screen - detect non-background pixels
|
||||
bg_color_gpu = cp.array(self.config.output.background_color)
|
||||
diff_gpu = cp.abs(frame_gpu.astype(cp.float32) - bg_color_gpu).sum(axis=2)
|
||||
mask_gpu = diff_gpu > 30 # Threshold for non-background
|
||||
|
||||
# Calculate area on GPU and return as Python int
|
||||
area = int(cp.sum(mask_gpu))
|
||||
return area
|
||||
|
||||
except ImportError:
|
||||
# Fallback to CPU NumPy if CuPy not available
|
||||
if frame.shape[2] == 4: # Alpha channel
|
||||
mask = frame[:, :, 3] > 0
|
||||
else: # Green screen - detect non-background pixels
|
||||
@@ -489,6 +696,64 @@ class VR180Processor(VideoProcessor):
|
||||
# TODO: Implement proper stereo correction algorithm
|
||||
return right_frame
|
||||
|
||||
def _complete_inter_chunk_cleanup(self, chunk_idx: int):
|
||||
"""
|
||||
Complete inter-chunk cleanup: Destroy all models to prevent memory accumulation
|
||||
|
||||
This addresses the core issue where SAM2 and YOLO models (~15-20GB)
|
||||
persist between chunks, causing OOM when processing subsequent chunks.
|
||||
"""
|
||||
print(f"🧹 INTER-CHUNK CLEANUP: Destroying all models after chunk {chunk_idx}")
|
||||
|
||||
# 1. Completely destroy SAM2 model (15-20GB)
|
||||
if hasattr(self, 'sam2_model') and self.sam2_model is not None:
|
||||
self.sam2_model.cleanup() # Call existing cleanup
|
||||
|
||||
# Force complete destruction of the model
|
||||
try:
|
||||
# Reset the model's loaded state so it will reload fresh
|
||||
if hasattr(self.sam2_model, '_model_loaded'):
|
||||
self.sam2_model._model_loaded = False
|
||||
|
||||
# Clear any cached state
|
||||
if hasattr(self.sam2_model, 'predictor'):
|
||||
self.sam2_model.predictor = None
|
||||
if hasattr(self.sam2_model, 'inference_state'):
|
||||
self.sam2_model.inference_state = None
|
||||
|
||||
print(f" ✅ SAM2 model destroyed and marked for fresh reload")
|
||||
|
||||
except Exception as e:
|
||||
print(f" ⚠️ SAM2 destruction warning: {e}")
|
||||
|
||||
# 2. Completely destroy YOLO detector (400MB+)
|
||||
if hasattr(self, 'detector') and self.detector is not None:
|
||||
try:
|
||||
# Force YOLO model to be reloaded fresh
|
||||
if hasattr(self.detector, 'model') and self.detector.model is not None:
|
||||
del self.detector.model
|
||||
self.detector.model = None
|
||||
print(f" ✅ YOLO model destroyed and marked for fresh reload")
|
||||
|
||||
except Exception as e:
|
||||
print(f" ⚠️ YOLO destruction warning: {e}")
|
||||
|
||||
# 3. Clear CUDA cache aggressively
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.synchronize() # Wait for all operations to complete
|
||||
print(f" ✅ CUDA cache cleared")
|
||||
|
||||
# 4. Force garbage collection
|
||||
import gc
|
||||
collected = gc.collect()
|
||||
print(f" ✅ Garbage collection: {collected} objects freed")
|
||||
|
||||
# 5. Memory verification
|
||||
self._print_memory_step(f"After complete inter-chunk cleanup (chunk {chunk_idx})")
|
||||
|
||||
print(f"🎯 RESULT: Models will reload fresh for next chunk (prevents 15-20GB accumulation)")
|
||||
|
||||
def process_chunk(self,
|
||||
frames: List[np.ndarray],
|
||||
chunk_idx: int = 0) -> List[np.ndarray]:
|
||||
@@ -548,6 +813,9 @@ class VR180Processor(VideoProcessor):
|
||||
combined = {'left': left_frame, 'right': right_frame}
|
||||
combined_frames.append(combined)
|
||||
|
||||
# CRITICAL: Complete inter-chunk cleanup for independent processing too
|
||||
self._complete_inter_chunk_cleanup(chunk_idx)
|
||||
|
||||
return combined_frames
|
||||
|
||||
def save_video(self, frames: List[np.ndarray], output_path: str):
|
||||
|
||||
Reference in New Issue
Block a user