commit2 runpod
This commit is contained in:
39
Dockerfile
Normal file
39
Dockerfile
Normal file
@@ -0,0 +1,39 @@
|
||||
FROM runpod/pytorch:2.4.0-py3.11-cuda12.4.1-devel-ubuntu22.04
|
||||
|
||||
# Set working directory
|
||||
WORKDIR /app
|
||||
|
||||
# Install system dependencies
|
||||
RUN apt-get update && apt-get install -y \
|
||||
ffmpeg \
|
||||
libsm6 \
|
||||
libxext6 \
|
||||
libxrender-dev \
|
||||
libglib2.0-0 \
|
||||
git \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Copy requirements first for better caching
|
||||
COPY requirements.txt .
|
||||
|
||||
# Install Python dependencies
|
||||
RUN pip install --no-cache-dir -r requirements.txt
|
||||
|
||||
# Install SAM2 (if not in requirements.txt)
|
||||
RUN pip install git+https://github.com/facebookresearch/segment-anything-2.git
|
||||
|
||||
# Copy project files
|
||||
COPY . .
|
||||
|
||||
# Install project in development mode
|
||||
RUN pip install -e .
|
||||
|
||||
# Create directories for models and data
|
||||
RUN mkdir -p /app/models /app/data /app/output
|
||||
|
||||
# Set environment variables
|
||||
ENV PYTHONPATH=/app
|
||||
ENV CUDA_VISIBLE_DEVICES=0
|
||||
|
||||
# Default command
|
||||
CMD ["/bin/bash"]
|
||||
216
RUNPOD_DEPLOYMENT.md
Normal file
216
RUNPOD_DEPLOYMENT.md
Normal file
@@ -0,0 +1,216 @@
|
||||
# RunPod Deployment Guide
|
||||
|
||||
## Quick Start (Recommended)
|
||||
|
||||
### 1. Create RunPod Instance
|
||||
- **Template**: `runpod/pytorch:2.4.0-py3.11-cuda12.4.1-devel-ubuntu22.04`
|
||||
- **GPU**: NVIDIA A40 (48GB VRAM)
|
||||
- **Storage**: 50GB+ (for videos and models)
|
||||
- **Persistent Storage**: Recommended for model caching
|
||||
|
||||
### 2. Connect and Setup
|
||||
```bash
|
||||
# After SSH/Terminal access
|
||||
cd /workspace
|
||||
|
||||
# Clone your repository
|
||||
git clone https://github.com/YOUR_USERNAME/sam2e.git
|
||||
cd sam2e
|
||||
|
||||
# Make setup script executable and run
|
||||
chmod +x runpod_setup.sh
|
||||
./runpod_setup.sh
|
||||
|
||||
# Install SAM2 separately (not on PyPI)
|
||||
pip install git+https://github.com/facebookresearch/segment-anything-2.git
|
||||
```
|
||||
|
||||
### 3. Upload Your Video
|
||||
```bash
|
||||
# Option 1: wget from URL
|
||||
wget -O /workspace/data/myvideo.mp4 "https://your-video-url.com/video.mp4"
|
||||
|
||||
# Option 2: Use RunPod's file browser
|
||||
# Upload to /workspace/data/
|
||||
|
||||
# Option 3: rclone from cloud storage
|
||||
rclone copy remote:path/to/video.mp4 /workspace/data/
|
||||
```
|
||||
|
||||
### 4. Configure and Run
|
||||
```bash
|
||||
# Use RunPod-optimized config
|
||||
cp config_runpod.yaml config.yaml
|
||||
|
||||
# Edit video path
|
||||
nano config.yaml # Update video_path
|
||||
|
||||
# Run processing
|
||||
vr180-matting config.yaml
|
||||
```
|
||||
|
||||
## Advanced Docker Deployment
|
||||
|
||||
### Option 1: Pre-built Docker Image
|
||||
```bash
|
||||
# Build and push to Docker Hub (do this locally first)
|
||||
docker build -t yourusername/vr180-matting:latest .
|
||||
docker push yourusername/vr180-matting:latest
|
||||
|
||||
# On RunPod, use your image as template
|
||||
```
|
||||
|
||||
### Option 2: Build on RunPod
|
||||
```bash
|
||||
cd /workspace/sam2e
|
||||
docker build -t vr180-matting .
|
||||
docker run --gpus all -v /workspace/data:/app/data -v /workspace/output:/app/output -it vr180-matting
|
||||
```
|
||||
|
||||
## Performance Tips for A40
|
||||
|
||||
### Optimal Settings
|
||||
```yaml
|
||||
processing:
|
||||
scale_factor: 0.75 # A40 can handle higher resolution
|
||||
chunk_size: 0 # Let it auto-calculate for 48GB
|
||||
|
||||
detection:
|
||||
model: "yolov8m" # or yolov8l for better accuracy
|
||||
|
||||
matting:
|
||||
memory_offload: false # Plenty of VRAM
|
||||
fp16: true # Still use FP16 for speed
|
||||
```
|
||||
|
||||
### Expected Performance
|
||||
- **50% scale**: ~10-15 FPS processing
|
||||
- **75% scale**: ~6-10 FPS processing
|
||||
- **100% scale**: ~4-6 FPS processing
|
||||
|
||||
### Memory Monitoring
|
||||
```bash
|
||||
# Watch GPU usage while processing
|
||||
watch -n 1 nvidia-smi
|
||||
|
||||
# Or in another terminal
|
||||
nvidia-smi dmon -s um
|
||||
```
|
||||
|
||||
## Batch Processing Script
|
||||
|
||||
Create `batch_process.py` for multiple videos:
|
||||
```python
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from vr180_matting.config import VR180Config
|
||||
from vr180_matting.vr180_processor import VR180Processor
|
||||
|
||||
# Directory setup
|
||||
input_dir = Path("/workspace/data/videos")
|
||||
output_dir = Path("/workspace/output")
|
||||
base_config = "config_runpod.yaml"
|
||||
|
||||
for video_file in input_dir.glob("*.mp4"):
|
||||
print(f"Processing: {video_file.name}")
|
||||
|
||||
# Load base config
|
||||
config = VR180Config.from_yaml(base_config)
|
||||
|
||||
# Update paths
|
||||
config.input.video_path = str(video_file)
|
||||
config.output.path = str(output_dir / f"matted_{video_file.stem}.mp4")
|
||||
|
||||
# Process
|
||||
processor = VR180Processor(config)
|
||||
processor.process_video()
|
||||
|
||||
print(f"Completed: {video_file.name}\n")
|
||||
```
|
||||
|
||||
## Cost Optimization
|
||||
|
||||
### RunPod Spot Instances
|
||||
- A40 spot: ~$0.44/hour vs $0.79/hour on-demand
|
||||
- Perfect for batch processing
|
||||
- Add persistence: $0.10/GB/month for model storage
|
||||
|
||||
### Processing Time Estimates
|
||||
- 30s clip @ 50% scale: ~10 minutes = ~$0.07
|
||||
- 1 hour video @ 50% scale: ~12 hours = ~$5.28
|
||||
- 1 hour video @ 25% scale: ~6 hours = ~$2.64
|
||||
|
||||
### Auto-shutdown Script
|
||||
```bash
|
||||
# Add to end of processing script
|
||||
echo "Processing complete, shutting down in 60 seconds..."
|
||||
sleep 60
|
||||
runpodctl stop instance
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### SAM2 Model Download Issues
|
||||
```bash
|
||||
# Manual download
|
||||
cd /workspace/sam2e/models
|
||||
wget https://dl.fbaipublicfiles.com/segment_anything_2/sam2_hiera_large.pt
|
||||
```
|
||||
|
||||
### CUDA Version Mismatch
|
||||
```bash
|
||||
# Check CUDA version
|
||||
nvcc --version
|
||||
python -c "import torch; print(torch.version.cuda)"
|
||||
|
||||
# Reinstall PyTorch if needed
|
||||
pip install torch torchvision --index-url https://download.pytorch.org/whl/cu121
|
||||
```
|
||||
|
||||
### Out of Memory on A40
|
||||
```yaml
|
||||
# Unlikely, but if it happens:
|
||||
processing:
|
||||
scale_factor: 0.25
|
||||
chunk_size: 300
|
||||
matting:
|
||||
memory_offload: true
|
||||
```
|
||||
|
||||
## Monitoring Dashboard
|
||||
|
||||
Create `monitor.py` for real-time stats:
|
||||
```python
|
||||
import psutil
|
||||
import GPUtil
|
||||
import time
|
||||
|
||||
while True:
|
||||
# GPU stats
|
||||
gpus = GPUtil.getGPUs()
|
||||
for gpu in gpus:
|
||||
print(f"GPU: {gpu.memoryUsed}MB / {gpu.memoryTotal}MB ({gpu.memoryUtil*100:.1f}%)")
|
||||
|
||||
# CPU/RAM stats
|
||||
print(f"RAM: {psutil.virtual_memory().percent}%")
|
||||
print(f"CPU: {psutil.cpu_percent()}%")
|
||||
print("-" * 40)
|
||||
time.sleep(2)
|
||||
```
|
||||
|
||||
## Quick Commands Reference
|
||||
|
||||
```bash
|
||||
# Test on short clip
|
||||
vr180-matting config.yaml --dry-run
|
||||
|
||||
# Process with monitoring
|
||||
vr180-matting config.yaml --verbose
|
||||
|
||||
# Override settings
|
||||
vr180-matting config.yaml --scale 0.25 --format greenscreen
|
||||
|
||||
# Generate config
|
||||
vr180-matting --generate-config my_config.yaml
|
||||
```
|
||||
26
config_runpod.yaml
Normal file
26
config_runpod.yaml
Normal file
@@ -0,0 +1,26 @@
|
||||
input:
|
||||
video_path: "/workspace/data/input_video.mp4"
|
||||
|
||||
processing:
|
||||
scale_factor: 0.5 # A40 can handle 0.5 well
|
||||
chunk_size: 0 # Auto-calculate based on A40's 48GB VRAM
|
||||
overlap_frames: 60
|
||||
|
||||
detection:
|
||||
confidence_threshold: 0.7
|
||||
model: "yolov8m" # Use medium model on A40
|
||||
|
||||
matting:
|
||||
use_disparity_mapping: true
|
||||
memory_offload: false # A40 has enough VRAM
|
||||
fp16: true
|
||||
|
||||
output:
|
||||
path: "/workspace/output/matted_video.mp4"
|
||||
format: "alpha"
|
||||
background_color: [0, 255, 0]
|
||||
maintain_sbs: true
|
||||
|
||||
hardware:
|
||||
device: "cuda"
|
||||
max_vram_gb: 45 # A40 has 48GB, leave headroom
|
||||
17
docker-compose.yml
Normal file
17
docker-compose.yml
Normal file
@@ -0,0 +1,17 @@
|
||||
version: '3.8'
|
||||
|
||||
services:
|
||||
vr180-matting:
|
||||
build: .
|
||||
runtime: nvidia
|
||||
environment:
|
||||
- NVIDIA_VISIBLE_DEVICES=all
|
||||
- CUDA_VISIBLE_DEVICES=0
|
||||
volumes:
|
||||
- ./data:/app/data # Mount data directory
|
||||
- ./output:/app/output # Mount output directory
|
||||
- ./models:/app/models # Mount models directory
|
||||
working_dir: /app
|
||||
stdin_open: true
|
||||
tty: true
|
||||
command: /bin/bash
|
||||
@@ -5,7 +5,7 @@ numpy>=1.24.0
|
||||
pillow>=10.0.0
|
||||
pyyaml>=6.0
|
||||
ultralytics>=8.0.0
|
||||
sam2>=1.0.0
|
||||
# sam2>=1.0.0 # Install via git: pip install git+https://github.com/facebookresearch/segment-anything-2.git
|
||||
tqdm>=4.65.0
|
||||
psutil>=5.9.0
|
||||
ffmpeg-python>=0.2.0
|
||||
71
runpod_setup.sh
Normal file
71
runpod_setup.sh
Normal file
@@ -0,0 +1,71 @@
|
||||
#!/bin/bash
|
||||
# RunPod Quick Setup Script
|
||||
|
||||
echo "🚀 Setting up VR180 Matting on RunPod..."
|
||||
echo "GPU: $(nvidia-smi --query-gpu=name --format=csv,noheader)"
|
||||
echo ""
|
||||
|
||||
# Update system
|
||||
echo "📦 Installing system dependencies..."
|
||||
apt-get update && apt-get install -y ffmpeg git wget nano
|
||||
|
||||
# Clone your repository (replace with your actual repo URL)
|
||||
cd /workspace
|
||||
if [ ! -d "sam2e" ]; then
|
||||
echo "📥 Cloning repository..."
|
||||
git clone https://git.10n.app/scott/test2.git
|
||||
fi
|
||||
cd sam2e
|
||||
|
||||
# Install Python dependencies
|
||||
echo "🐍 Installing Python dependencies..."
|
||||
pip install --upgrade pip
|
||||
pip install -r requirements.txt
|
||||
|
||||
# Install SAM2 separately (not on PyPI)
|
||||
echo "🎯 Installing SAM2..."
|
||||
pip install git+https://github.com/facebookresearch/segment-anything-2.git
|
||||
|
||||
# Install project
|
||||
echo "📦 Installing VR180 matting package..."
|
||||
pip install -e .
|
||||
|
||||
# Download models
|
||||
echo "📥 Downloading models..."
|
||||
mkdir -p models
|
||||
|
||||
# Download YOLOv8 models
|
||||
python -c "from ultralytics import YOLO; YOLO('yolov8n.pt'); YOLO('yolov8m.pt')"
|
||||
|
||||
# Download SAM2 checkpoint
|
||||
cd models
|
||||
if [ ! -f "sam2_hiera_large.pt" ]; then
|
||||
echo "Downloading SAM2 model weights..."
|
||||
wget -q --show-progress https://dl.fbaipublicfiles.com/segment_anything_2/sam2_hiera_large.pt
|
||||
fi
|
||||
cd ..
|
||||
|
||||
# Create working directories
|
||||
mkdir -p /workspace/data /workspace/output
|
||||
|
||||
# Test installation
|
||||
echo ""
|
||||
echo "🧪 Testing installation..."
|
||||
python test_installation.py
|
||||
|
||||
echo ""
|
||||
echo "✅ Setup complete!"
|
||||
echo ""
|
||||
echo "📝 Quick start:"
|
||||
echo "1. Upload your VR180 video to /workspace/data/"
|
||||
echo " wget -O /workspace/data/video.mp4 'your-video-url'"
|
||||
echo ""
|
||||
echo "2. Use the RunPod optimized config:"
|
||||
echo " cp config_runpod.yaml config.yaml"
|
||||
echo " nano config.yaml # Update video path"
|
||||
echo ""
|
||||
echo "3. Run the matting:"
|
||||
echo " vr180-matting config.yaml"
|
||||
echo ""
|
||||
echo "💡 For A40 GPU, you can use higher quality settings:"
|
||||
echo " vr180-matting config.yaml --scale 0.75"
|
||||
5
setup.py
5
setup.py
@@ -13,11 +13,14 @@ setup(
|
||||
"pillow>=10.0.0",
|
||||
"pyyaml>=6.0",
|
||||
"ultralytics>=8.0.0",
|
||||
"sam2>=1.0.0",
|
||||
# "sam2>=1.0.0", # Install separately: pip install git+https://github.com/facebookresearch/segment-anything-2.git
|
||||
"tqdm>=4.65.0",
|
||||
"psutil>=5.9.0",
|
||||
"ffmpeg-python>=0.2.0",
|
||||
],
|
||||
dependency_links=[
|
||||
"git+https://github.com/facebookresearch/segment-anything-2.git#egg=sam2"
|
||||
],
|
||||
entry_points={
|
||||
"console_scripts": [
|
||||
"vr180-matting=vr180_matting.main:main",
|
||||
|
||||
64
test_installation.py
Normal file
64
test_installation.py
Normal file
@@ -0,0 +1,64 @@
|
||||
#!/usr/bin/env python3
|
||||
"""Test script to verify installation and GPU setup"""
|
||||
|
||||
import sys
|
||||
import torch
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
print("VR180 Matting Installation Test")
|
||||
print("=" * 50)
|
||||
|
||||
# Check Python version
|
||||
print(f"Python version: {sys.version}")
|
||||
|
||||
# Check PyTorch and CUDA
|
||||
print(f"\nPyTorch version: {torch.__version__}")
|
||||
print(f"CUDA available: {torch.cuda.is_available()}")
|
||||
if torch.cuda.is_available():
|
||||
print(f"CUDA version: {torch.version.cuda}")
|
||||
print(f"GPU: {torch.cuda.get_device_name(0)}")
|
||||
print(f"GPU Memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f} GB")
|
||||
|
||||
# Check OpenCV
|
||||
print(f"\nOpenCV version: {cv2.__version__}")
|
||||
|
||||
# Test imports
|
||||
try:
|
||||
from ultralytics import YOLO
|
||||
print("\n✅ YOLO import successful")
|
||||
except ImportError as e:
|
||||
print(f"\n❌ YOLO import failed: {e}")
|
||||
|
||||
try:
|
||||
from sam2.build_sam import build_sam2_video_predictor
|
||||
print("✅ SAM2 import successful")
|
||||
except ImportError as e:
|
||||
print(f"❌ SAM2 import failed: {e}")
|
||||
print(" Install with: pip install git+https://github.com/facebookresearch/segment-anything-2.git")
|
||||
|
||||
try:
|
||||
from vr180_matting.config import VR180Config
|
||||
from vr180_matting.detector import YOLODetector
|
||||
from vr180_matting.sam2_wrapper import SAM2VideoMatting
|
||||
from vr180_matting.memory_manager import VRAMManager
|
||||
print("✅ VR180 matting modules import successful")
|
||||
except ImportError as e:
|
||||
print(f"❌ VR180 matting import failed: {e}")
|
||||
print(" Make sure to run: pip install -e .")
|
||||
|
||||
# Memory check
|
||||
if torch.cuda.is_available():
|
||||
print(f"\n📊 Current GPU Memory Usage:")
|
||||
print(f" Allocated: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
|
||||
print(f" Reserved: {torch.cuda.memory_reserved() / 1024**3:.2f} GB")
|
||||
print(f" Free: {(torch.cuda.get_device_properties(0).total_memory - torch.cuda.memory_reserved()) / 1024**3:.2f} GB")
|
||||
|
||||
print("\n" + "=" * 50)
|
||||
print("Installation test complete!")
|
||||
print("\nNext steps:")
|
||||
print("1. If any imports failed, install missing dependencies")
|
||||
print("2. Download SAM2 model weights if needed")
|
||||
print("3. Run: vr180-matting --generate-config config.yaml")
|
||||
print("4. Edit config.yaml with your video path")
|
||||
print("5. Run: vr180-matting config.yaml")
|
||||
Reference in New Issue
Block a user