commit2 runpod

This commit is contained in:
2025-07-26 07:35:44 -07:00
parent cc77989365
commit 7a74516dc5
8 changed files with 438 additions and 2 deletions

39
Dockerfile Normal file
View File

@@ -0,0 +1,39 @@
FROM runpod/pytorch:2.4.0-py3.11-cuda12.4.1-devel-ubuntu22.04
# Set working directory
WORKDIR /app
# Install system dependencies
RUN apt-get update && apt-get install -y \
ffmpeg \
libsm6 \
libxext6 \
libxrender-dev \
libglib2.0-0 \
git \
&& rm -rf /var/lib/apt/lists/*
# Copy requirements first for better caching
COPY requirements.txt .
# Install Python dependencies
RUN pip install --no-cache-dir -r requirements.txt
# Install SAM2 (if not in requirements.txt)
RUN pip install git+https://github.com/facebookresearch/segment-anything-2.git
# Copy project files
COPY . .
# Install project in development mode
RUN pip install -e .
# Create directories for models and data
RUN mkdir -p /app/models /app/data /app/output
# Set environment variables
ENV PYTHONPATH=/app
ENV CUDA_VISIBLE_DEVICES=0
# Default command
CMD ["/bin/bash"]

216
RUNPOD_DEPLOYMENT.md Normal file
View File

@@ -0,0 +1,216 @@
# RunPod Deployment Guide
## Quick Start (Recommended)
### 1. Create RunPod Instance
- **Template**: `runpod/pytorch:2.4.0-py3.11-cuda12.4.1-devel-ubuntu22.04`
- **GPU**: NVIDIA A40 (48GB VRAM)
- **Storage**: 50GB+ (for videos and models)
- **Persistent Storage**: Recommended for model caching
### 2. Connect and Setup
```bash
# After SSH/Terminal access
cd /workspace
# Clone your repository
git clone https://github.com/YOUR_USERNAME/sam2e.git
cd sam2e
# Make setup script executable and run
chmod +x runpod_setup.sh
./runpod_setup.sh
# Install SAM2 separately (not on PyPI)
pip install git+https://github.com/facebookresearch/segment-anything-2.git
```
### 3. Upload Your Video
```bash
# Option 1: wget from URL
wget -O /workspace/data/myvideo.mp4 "https://your-video-url.com/video.mp4"
# Option 2: Use RunPod's file browser
# Upload to /workspace/data/
# Option 3: rclone from cloud storage
rclone copy remote:path/to/video.mp4 /workspace/data/
```
### 4. Configure and Run
```bash
# Use RunPod-optimized config
cp config_runpod.yaml config.yaml
# Edit video path
nano config.yaml # Update video_path
# Run processing
vr180-matting config.yaml
```
## Advanced Docker Deployment
### Option 1: Pre-built Docker Image
```bash
# Build and push to Docker Hub (do this locally first)
docker build -t yourusername/vr180-matting:latest .
docker push yourusername/vr180-matting:latest
# On RunPod, use your image as template
```
### Option 2: Build on RunPod
```bash
cd /workspace/sam2e
docker build -t vr180-matting .
docker run --gpus all -v /workspace/data:/app/data -v /workspace/output:/app/output -it vr180-matting
```
## Performance Tips for A40
### Optimal Settings
```yaml
processing:
scale_factor: 0.75 # A40 can handle higher resolution
chunk_size: 0 # Let it auto-calculate for 48GB
detection:
model: "yolov8m" # or yolov8l for better accuracy
matting:
memory_offload: false # Plenty of VRAM
fp16: true # Still use FP16 for speed
```
### Expected Performance
- **50% scale**: ~10-15 FPS processing
- **75% scale**: ~6-10 FPS processing
- **100% scale**: ~4-6 FPS processing
### Memory Monitoring
```bash
# Watch GPU usage while processing
watch -n 1 nvidia-smi
# Or in another terminal
nvidia-smi dmon -s um
```
## Batch Processing Script
Create `batch_process.py` for multiple videos:
```python
import os
import sys
from pathlib import Path
from vr180_matting.config import VR180Config
from vr180_matting.vr180_processor import VR180Processor
# Directory setup
input_dir = Path("/workspace/data/videos")
output_dir = Path("/workspace/output")
base_config = "config_runpod.yaml"
for video_file in input_dir.glob("*.mp4"):
print(f"Processing: {video_file.name}")
# Load base config
config = VR180Config.from_yaml(base_config)
# Update paths
config.input.video_path = str(video_file)
config.output.path = str(output_dir / f"matted_{video_file.stem}.mp4")
# Process
processor = VR180Processor(config)
processor.process_video()
print(f"Completed: {video_file.name}\n")
```
## Cost Optimization
### RunPod Spot Instances
- A40 spot: ~$0.44/hour vs $0.79/hour on-demand
- Perfect for batch processing
- Add persistence: $0.10/GB/month for model storage
### Processing Time Estimates
- 30s clip @ 50% scale: ~10 minutes = ~$0.07
- 1 hour video @ 50% scale: ~12 hours = ~$5.28
- 1 hour video @ 25% scale: ~6 hours = ~$2.64
### Auto-shutdown Script
```bash
# Add to end of processing script
echo "Processing complete, shutting down in 60 seconds..."
sleep 60
runpodctl stop instance
```
## Troubleshooting
### SAM2 Model Download Issues
```bash
# Manual download
cd /workspace/sam2e/models
wget https://dl.fbaipublicfiles.com/segment_anything_2/sam2_hiera_large.pt
```
### CUDA Version Mismatch
```bash
# Check CUDA version
nvcc --version
python -c "import torch; print(torch.version.cuda)"
# Reinstall PyTorch if needed
pip install torch torchvision --index-url https://download.pytorch.org/whl/cu121
```
### Out of Memory on A40
```yaml
# Unlikely, but if it happens:
processing:
scale_factor: 0.25
chunk_size: 300
matting:
memory_offload: true
```
## Monitoring Dashboard
Create `monitor.py` for real-time stats:
```python
import psutil
import GPUtil
import time
while True:
# GPU stats
gpus = GPUtil.getGPUs()
for gpu in gpus:
print(f"GPU: {gpu.memoryUsed}MB / {gpu.memoryTotal}MB ({gpu.memoryUtil*100:.1f}%)")
# CPU/RAM stats
print(f"RAM: {psutil.virtual_memory().percent}%")
print(f"CPU: {psutil.cpu_percent()}%")
print("-" * 40)
time.sleep(2)
```
## Quick Commands Reference
```bash
# Test on short clip
vr180-matting config.yaml --dry-run
# Process with monitoring
vr180-matting config.yaml --verbose
# Override settings
vr180-matting config.yaml --scale 0.25 --format greenscreen
# Generate config
vr180-matting --generate-config my_config.yaml
```

26
config_runpod.yaml Normal file
View File

@@ -0,0 +1,26 @@
input:
video_path: "/workspace/data/input_video.mp4"
processing:
scale_factor: 0.5 # A40 can handle 0.5 well
chunk_size: 0 # Auto-calculate based on A40's 48GB VRAM
overlap_frames: 60
detection:
confidence_threshold: 0.7
model: "yolov8m" # Use medium model on A40
matting:
use_disparity_mapping: true
memory_offload: false # A40 has enough VRAM
fp16: true
output:
path: "/workspace/output/matted_video.mp4"
format: "alpha"
background_color: [0, 255, 0]
maintain_sbs: true
hardware:
device: "cuda"
max_vram_gb: 45 # A40 has 48GB, leave headroom

17
docker-compose.yml Normal file
View File

@@ -0,0 +1,17 @@
version: '3.8'
services:
vr180-matting:
build: .
runtime: nvidia
environment:
- NVIDIA_VISIBLE_DEVICES=all
- CUDA_VISIBLE_DEVICES=0
volumes:
- ./data:/app/data # Mount data directory
- ./output:/app/output # Mount output directory
- ./models:/app/models # Mount models directory
working_dir: /app
stdin_open: true
tty: true
command: /bin/bash

View File

@@ -5,7 +5,7 @@ numpy>=1.24.0
pillow>=10.0.0
pyyaml>=6.0
ultralytics>=8.0.0
sam2>=1.0.0
# sam2>=1.0.0 # Install via git: pip install git+https://github.com/facebookresearch/segment-anything-2.git
tqdm>=4.65.0
psutil>=5.9.0
ffmpeg-python>=0.2.0

71
runpod_setup.sh Normal file
View File

@@ -0,0 +1,71 @@
#!/bin/bash
# RunPod Quick Setup Script
echo "🚀 Setting up VR180 Matting on RunPod..."
echo "GPU: $(nvidia-smi --query-gpu=name --format=csv,noheader)"
echo ""
# Update system
echo "📦 Installing system dependencies..."
apt-get update && apt-get install -y ffmpeg git wget nano
# Clone your repository (replace with your actual repo URL)
cd /workspace
if [ ! -d "sam2e" ]; then
echo "📥 Cloning repository..."
git clone https://git.10n.app/scott/test2.git
fi
cd sam2e
# Install Python dependencies
echo "🐍 Installing Python dependencies..."
pip install --upgrade pip
pip install -r requirements.txt
# Install SAM2 separately (not on PyPI)
echo "🎯 Installing SAM2..."
pip install git+https://github.com/facebookresearch/segment-anything-2.git
# Install project
echo "📦 Installing VR180 matting package..."
pip install -e .
# Download models
echo "📥 Downloading models..."
mkdir -p models
# Download YOLOv8 models
python -c "from ultralytics import YOLO; YOLO('yolov8n.pt'); YOLO('yolov8m.pt')"
# Download SAM2 checkpoint
cd models
if [ ! -f "sam2_hiera_large.pt" ]; then
echo "Downloading SAM2 model weights..."
wget -q --show-progress https://dl.fbaipublicfiles.com/segment_anything_2/sam2_hiera_large.pt
fi
cd ..
# Create working directories
mkdir -p /workspace/data /workspace/output
# Test installation
echo ""
echo "🧪 Testing installation..."
python test_installation.py
echo ""
echo "✅ Setup complete!"
echo ""
echo "📝 Quick start:"
echo "1. Upload your VR180 video to /workspace/data/"
echo " wget -O /workspace/data/video.mp4 'your-video-url'"
echo ""
echo "2. Use the RunPod optimized config:"
echo " cp config_runpod.yaml config.yaml"
echo " nano config.yaml # Update video path"
echo ""
echo "3. Run the matting:"
echo " vr180-matting config.yaml"
echo ""
echo "💡 For A40 GPU, you can use higher quality settings:"
echo " vr180-matting config.yaml --scale 0.75"

View File

@@ -13,11 +13,14 @@ setup(
"pillow>=10.0.0",
"pyyaml>=6.0",
"ultralytics>=8.0.0",
"sam2>=1.0.0",
# "sam2>=1.0.0", # Install separately: pip install git+https://github.com/facebookresearch/segment-anything-2.git
"tqdm>=4.65.0",
"psutil>=5.9.0",
"ffmpeg-python>=0.2.0",
],
dependency_links=[
"git+https://github.com/facebookresearch/segment-anything-2.git#egg=sam2"
],
entry_points={
"console_scripts": [
"vr180-matting=vr180_matting.main:main",

64
test_installation.py Normal file
View File

@@ -0,0 +1,64 @@
#!/usr/bin/env python3
"""Test script to verify installation and GPU setup"""
import sys
import torch
import cv2
import numpy as np
print("VR180 Matting Installation Test")
print("=" * 50)
# Check Python version
print(f"Python version: {sys.version}")
# Check PyTorch and CUDA
print(f"\nPyTorch version: {torch.__version__}")
print(f"CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
print(f"CUDA version: {torch.version.cuda}")
print(f"GPU: {torch.cuda.get_device_name(0)}")
print(f"GPU Memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f} GB")
# Check OpenCV
print(f"\nOpenCV version: {cv2.__version__}")
# Test imports
try:
from ultralytics import YOLO
print("\n✅ YOLO import successful")
except ImportError as e:
print(f"\n❌ YOLO import failed: {e}")
try:
from sam2.build_sam import build_sam2_video_predictor
print("✅ SAM2 import successful")
except ImportError as e:
print(f"❌ SAM2 import failed: {e}")
print(" Install with: pip install git+https://github.com/facebookresearch/segment-anything-2.git")
try:
from vr180_matting.config import VR180Config
from vr180_matting.detector import YOLODetector
from vr180_matting.sam2_wrapper import SAM2VideoMatting
from vr180_matting.memory_manager import VRAMManager
print("✅ VR180 matting modules import successful")
except ImportError as e:
print(f"❌ VR180 matting import failed: {e}")
print(" Make sure to run: pip install -e .")
# Memory check
if torch.cuda.is_available():
print(f"\n📊 Current GPU Memory Usage:")
print(f" Allocated: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
print(f" Reserved: {torch.cuda.memory_reserved() / 1024**3:.2f} GB")
print(f" Free: {(torch.cuda.get_device_properties(0).total_memory - torch.cuda.memory_reserved()) / 1024**3:.2f} GB")
print("\n" + "=" * 50)
print("Installation test complete!")
print("\nNext steps:")
print("1. If any imports failed, install missing dependencies")
print("2. Download SAM2 model weights if needed")
print("3. Run: vr180-matting --generate-config config.yaml")
print("4. Edit config.yaml with your video path")
print("5. Run: vr180-matting config.yaml")