catagory A round 2
This commit is contained in:
@@ -232,6 +232,9 @@ class VR180Processor(VideoProcessor):
|
||||
# Use the original video's framerate - access through parent class
|
||||
original_fps = self.fps if hasattr(self, 'fps') else 30.0
|
||||
print(f"Using framerate: {original_fps} fps")
|
||||
|
||||
# Memory monitoring before ffmpeg
|
||||
self._print_memory_step(f"Before ffmpeg encoding ({eye_name} eye)")
|
||||
# Try GPU encoding first, fallback to CPU
|
||||
gpu_cmd = [
|
||||
'ffmpeg', '-y', # -y to overwrite output file
|
||||
@@ -283,6 +286,9 @@ class VR180Processor(VideoProcessor):
|
||||
|
||||
print(f"Created temp video successfully")
|
||||
|
||||
# Memory monitoring after ffmpeg
|
||||
self._print_memory_step(f"After ffmpeg encoding ({eye_name} eye)")
|
||||
|
||||
# Verify the file was created and has content
|
||||
if not temp_video_path.exists():
|
||||
raise RuntimeError(f"Temporary video file was not created: {temp_video_path}")
|
||||
@@ -293,16 +299,28 @@ class VR180Processor(VideoProcessor):
|
||||
|
||||
print(f"Created temp video {temp_video_path} ({file_size / 1024 / 1024:.1f} MB)")
|
||||
|
||||
# Memory monitoring and cleanup before SAM2 initialization
|
||||
num_frames = len(eye_frames) # Store count before freeing
|
||||
first_frame = eye_frames[0].copy() # Copy first frame for detection before freeing
|
||||
self._print_memory_step(f"Before SAM2 init ({eye_name} eye, {num_frames} frames)")
|
||||
|
||||
# CRITICAL: Explicitly free eye_frames from memory before SAM2 loads the same video
|
||||
# This prevents the OOM issue where both Python frames and SAM2 frames exist simultaneously
|
||||
del eye_frames # Free the frames array
|
||||
self._aggressive_memory_cleanup(f"SAM2 init for {eye_name} eye")
|
||||
|
||||
# Initialize SAM2 with video path
|
||||
self._print_memory_step(f"Starting SAM2 init ({eye_name} eye)")
|
||||
self.sam2_model.init_video_state(video_path=str(temp_video_path))
|
||||
self._print_memory_step(f"SAM2 initialized ({eye_name} eye)")
|
||||
|
||||
# Detect persons in first frame
|
||||
first_frame = eye_frames[0]
|
||||
detections = self.detector.detect_persons(first_frame)
|
||||
|
||||
if not detections:
|
||||
warnings.warn(f"No persons detected in {eye_name} eye, chunk {chunk_idx}")
|
||||
return self._create_empty_masks(eye_frames)
|
||||
# Return empty masks for the number of frames
|
||||
return self._create_empty_masks_from_count(num_frames, first_frame.shape)
|
||||
|
||||
print(f"Detected {len(detections)} persons in {eye_name} eye first frame")
|
||||
|
||||
@@ -312,15 +330,33 @@ class VR180Processor(VideoProcessor):
|
||||
# Add prompts
|
||||
object_ids = self.sam2_model.add_person_prompts(0, box_prompts, labels)
|
||||
|
||||
# Propagate masks
|
||||
# Propagate masks (most expensive operation)
|
||||
self._print_memory_step(f"Before SAM2 propagation ({eye_name} eye, {num_frames} frames)")
|
||||
video_segments = self.sam2_model.propagate_masks(
|
||||
start_frame=0,
|
||||
max_frames=len(eye_frames)
|
||||
max_frames=num_frames
|
||||
)
|
||||
self._print_memory_step(f"After SAM2 propagation ({eye_name} eye)")
|
||||
|
||||
# Apply masks - need to reload frames from temp video since we freed the original frames
|
||||
self._print_memory_step(f"Before reloading frames for mask application ({eye_name} eye)")
|
||||
|
||||
# Read frames back from the temp video for mask application
|
||||
cap = cv2.VideoCapture(str(temp_video_path))
|
||||
reloaded_frames = []
|
||||
|
||||
for frame_idx in range(num_frames):
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
break
|
||||
reloaded_frames.append(frame)
|
||||
cap.release()
|
||||
|
||||
self._print_memory_step(f"Reloaded {len(reloaded_frames)} frames for mask application")
|
||||
|
||||
# Apply masks
|
||||
matted_frames = []
|
||||
for frame_idx, frame in enumerate(eye_frames):
|
||||
for frame_idx, frame in enumerate(reloaded_frames):
|
||||
if frame_idx in video_segments:
|
||||
frame_masks = video_segments[frame_idx]
|
||||
combined_mask = self.sam2_model.get_combined_mask(frame_masks)
|
||||
@@ -335,6 +371,10 @@ class VR180Processor(VideoProcessor):
|
||||
|
||||
matted_frames.append(matted_frame)
|
||||
|
||||
# Free reloaded frames
|
||||
del reloaded_frames
|
||||
self._aggressive_memory_cleanup(f"After mask application ({eye_name} eye)")
|
||||
|
||||
return matted_frames
|
||||
|
||||
finally:
|
||||
@@ -410,6 +450,20 @@ class VR180Processor(VideoProcessor):
|
||||
|
||||
return validated_frames
|
||||
|
||||
def _create_empty_masks_from_count(self, num_frames: int, frame_shape: tuple) -> List[np.ndarray]:
|
||||
"""Create empty masks when no persons detected (without frame array)"""
|
||||
empty_frames = []
|
||||
for _ in range(num_frames):
|
||||
if self.config.output.format == "alpha":
|
||||
# Transparent output
|
||||
output = np.zeros((frame_shape[0], frame_shape[1], 4), dtype=np.uint8)
|
||||
else:
|
||||
# Green screen background
|
||||
output = np.full((frame_shape[0], frame_shape[1], 3),
|
||||
self.config.output.background_color, dtype=np.uint8)
|
||||
empty_frames.append(output)
|
||||
return empty_frames
|
||||
|
||||
def _get_mask_area(self, frame: np.ndarray) -> float:
|
||||
"""Get mask area from processed frame"""
|
||||
if frame.shape[2] == 4: # Alpha channel
|
||||
|
||||
Reference in New Issue
Block a user