735 lines
32 KiB
Python
735 lines
32 KiB
Python
"""
|
|
YOLO detector module for human detection in video segments.
|
|
Preserves the core detection logic from the original implementation.
|
|
"""
|
|
|
|
import os
|
|
import cv2
|
|
import numpy as np
|
|
import logging
|
|
from typing import List, Dict, Any, Optional, Tuple
|
|
from ultralytics import YOLO
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
class YOLODetector:
|
|
"""Handles YOLO-based human detection for video segments with support for both detection and segmentation modes."""
|
|
|
|
def __init__(self, detection_model_path: str = None, segmentation_model_path: str = None,
|
|
mode: str = "detection", confidence_threshold: float = 0.6, human_class_id: int = 0):
|
|
"""
|
|
Initialize YOLO detector with support for both detection and segmentation modes.
|
|
|
|
Args:
|
|
detection_model_path: Path to YOLO detection model weights (e.g., yolov8n.pt)
|
|
segmentation_model_path: Path to YOLO segmentation model weights (e.g., yolov8n-seg.pt)
|
|
mode: Detection mode - "detection" for bboxes, "segmentation" for masks
|
|
confidence_threshold: Detection confidence threshold
|
|
human_class_id: COCO class ID for humans (0 = person)
|
|
"""
|
|
self.mode = mode
|
|
self.confidence_threshold = confidence_threshold
|
|
self.human_class_id = human_class_id
|
|
|
|
# Select model path based on mode
|
|
if mode == "segmentation":
|
|
if not segmentation_model_path:
|
|
raise ValueError("segmentation_model_path required for segmentation mode")
|
|
self.model_path = segmentation_model_path
|
|
self.supports_segmentation = True
|
|
elif mode == "detection":
|
|
if not detection_model_path:
|
|
raise ValueError("detection_model_path required for detection mode")
|
|
self.model_path = detection_model_path
|
|
self.supports_segmentation = False
|
|
else:
|
|
raise ValueError(f"Invalid mode: {mode}. Must be 'detection' or 'segmentation'")
|
|
|
|
# Load YOLO model
|
|
try:
|
|
self.model = YOLO(self.model_path)
|
|
logger.info(f"Loaded YOLO model in {mode} mode from {self.model_path}")
|
|
|
|
# Verify model capabilities
|
|
if mode == "segmentation":
|
|
# Test if model actually supports segmentation
|
|
logger.info(f"YOLO Segmentation: Model loaded, will output direct masks")
|
|
else:
|
|
logger.info(f"YOLO Detection: Model loaded, will output bounding boxes")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Failed to load YOLO model: {e}")
|
|
raise
|
|
|
|
def detect_humans_in_frame(self, frame: np.ndarray) -> List[Dict[str, Any]]:
|
|
"""
|
|
Detect humans in a single frame using YOLO.
|
|
|
|
Args:
|
|
frame: Input frame (BGR format from OpenCV)
|
|
|
|
Returns:
|
|
List of human detection dictionaries with bbox, confidence, and optionally masks
|
|
"""
|
|
# Run YOLO detection/segmentation
|
|
results = self.model(frame, conf=self.confidence_threshold, verbose=False)
|
|
|
|
human_detections = []
|
|
|
|
# Process results
|
|
for result in results:
|
|
boxes = result.boxes
|
|
masks = result.masks if hasattr(result, 'masks') and result.masks is not None else None
|
|
|
|
if boxes is not None:
|
|
for i, box in enumerate(boxes):
|
|
# Get class ID
|
|
cls = int(box.cls.cpu().numpy()[0])
|
|
|
|
# Check if it's a person (human_class_id)
|
|
if cls == self.human_class_id:
|
|
# Get bounding box coordinates (x1, y1, x2, y2)
|
|
coords = box.xyxy[0].cpu().numpy()
|
|
conf = float(box.conf.cpu().numpy()[0])
|
|
|
|
detection = {
|
|
'bbox': coords,
|
|
'confidence': conf,
|
|
'has_mask': False,
|
|
'mask': None
|
|
}
|
|
|
|
# Extract mask if available (segmentation mode)
|
|
if masks is not None and i < len(masks.data):
|
|
mask_data = masks.data[i].cpu().numpy() # Get mask for this detection
|
|
detection['has_mask'] = True
|
|
detection['mask'] = mask_data
|
|
logger.debug(f"YOLO Segmentation: Detected human with mask - conf={conf:.2f}, mask_shape={mask_data.shape}")
|
|
else:
|
|
logger.debug(f"YOLO Detection: Detected human with bbox - conf={conf:.2f}, bbox={coords}")
|
|
|
|
human_detections.append(detection)
|
|
|
|
if self.supports_segmentation:
|
|
masks_found = sum(1 for d in human_detections if d['has_mask'])
|
|
logger.info(f"YOLO Segmentation: Found {len(human_detections)} humans, {masks_found} with masks")
|
|
else:
|
|
logger.debug(f"YOLO Detection: Found {len(human_detections)} humans with bounding boxes")
|
|
|
|
return human_detections
|
|
|
|
def detect_humans_in_video_first_frame(self, video_path: str, scale: float = 1.0) -> List[Dict[str, Any]]:
|
|
"""
|
|
Detect humans in the first frame of a video.
|
|
|
|
Args:
|
|
video_path: Path to video file
|
|
scale: Scale factor for frame processing
|
|
|
|
Returns:
|
|
List of human detection dictionaries
|
|
"""
|
|
if not os.path.exists(video_path):
|
|
logger.error(f"Video file not found: {video_path}")
|
|
return []
|
|
|
|
cap = cv2.VideoCapture(video_path)
|
|
if not cap.isOpened():
|
|
logger.error(f"Could not open video: {video_path}")
|
|
return []
|
|
|
|
ret, frame = cap.read()
|
|
cap.release()
|
|
|
|
if not ret:
|
|
logger.error(f"Could not read first frame from: {video_path}")
|
|
return []
|
|
|
|
# Scale frame if needed
|
|
if scale != 1.0:
|
|
frame = cv2.resize(frame, None, fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR)
|
|
|
|
return self.detect_humans_in_frame(frame)
|
|
|
|
def save_detections_to_file(self, detections: List[Dict[str, Any]], output_path: str) -> bool:
|
|
"""
|
|
Save detection results to file.
|
|
|
|
Args:
|
|
detections: List of detection dictionaries
|
|
output_path: Path to save detections
|
|
|
|
Returns:
|
|
True if saved successfully
|
|
"""
|
|
try:
|
|
with open(output_path, 'w') as f:
|
|
f.write("# YOLO Human Detections\\n")
|
|
if detections:
|
|
for detection in detections:
|
|
bbox = detection['bbox']
|
|
conf = detection['confidence']
|
|
f.write(f"{bbox[0]},{bbox[1]},{bbox[2]},{bbox[3]},{conf}\\n")
|
|
logger.info(f"Saved {len(detections)} detections to {output_path}")
|
|
else:
|
|
f.write("# No humans detected\\n")
|
|
logger.info(f"Saved empty detection file to {output_path}")
|
|
return True
|
|
except Exception as e:
|
|
logger.error(f"Failed to save detections to {output_path}: {e}")
|
|
return False
|
|
|
|
def load_detections_from_file(self, file_path: str) -> List[Dict[str, Any]]:
|
|
"""
|
|
Load detection results from file.
|
|
|
|
Args:
|
|
file_path: Path to detection file
|
|
|
|
Returns:
|
|
List of detection dictionaries
|
|
"""
|
|
detections = []
|
|
|
|
if not os.path.exists(file_path):
|
|
logger.warning(f"Detection file not found: {file_path}")
|
|
return detections
|
|
|
|
try:
|
|
with open(file_path, 'r') as f:
|
|
content = f.read()
|
|
|
|
# Handle files with literal \n characters
|
|
if '\\n' in content:
|
|
lines = content.split('\\n')
|
|
else:
|
|
lines = content.split('\n')
|
|
|
|
for line in lines:
|
|
line = line.strip()
|
|
# Skip comments and empty lines
|
|
if line.startswith('#') or not line:
|
|
continue
|
|
|
|
# Parse detection line: x1,y1,x2,y2,confidence
|
|
parts = line.split(',')
|
|
if len(parts) == 5:
|
|
try:
|
|
bbox = [float(x) for x in parts[:4]]
|
|
conf = float(parts[4])
|
|
detections.append({
|
|
'bbox': np.array(bbox),
|
|
'confidence': conf
|
|
})
|
|
except ValueError:
|
|
logger.warning(f"Invalid detection line: {line}")
|
|
continue
|
|
|
|
logger.info(f"Loaded {len(detections)} detections from {file_path}")
|
|
except Exception as e:
|
|
logger.error(f"Failed to load detections from {file_path}: {e}")
|
|
|
|
return detections
|
|
|
|
def debug_detect_with_lower_confidence(self, frame: np.ndarray, debug_confidence: float = 0.3) -> List[Dict[str, Any]]:
|
|
"""
|
|
Run YOLO detection with a lower confidence threshold for debugging.
|
|
This helps identify if detections are being missed due to high confidence threshold.
|
|
|
|
Args:
|
|
frame: Input frame (BGR format from OpenCV)
|
|
debug_confidence: Lower confidence threshold for debugging
|
|
|
|
Returns:
|
|
List of human detection dictionaries with lower confidence threshold
|
|
"""
|
|
logger.info(f"VR180 Debug: Running YOLO with lower confidence {debug_confidence} (vs normal {self.confidence_threshold})")
|
|
|
|
# Run YOLO detection with lower confidence
|
|
results = self.model(frame, conf=debug_confidence, verbose=False)
|
|
|
|
debug_detections = []
|
|
|
|
# Process results
|
|
for result in results:
|
|
boxes = result.boxes
|
|
if boxes is not None:
|
|
for box in boxes:
|
|
# Get class ID
|
|
cls = int(box.cls.cpu().numpy()[0])
|
|
|
|
# Check if it's a person (human_class_id)
|
|
if cls == self.human_class_id:
|
|
# Get bounding box coordinates (x1, y1, x2, y2)
|
|
coords = box.xyxy[0].cpu().numpy()
|
|
conf = float(box.conf.cpu().numpy()[0])
|
|
|
|
debug_detections.append({
|
|
'bbox': coords,
|
|
'confidence': conf
|
|
})
|
|
|
|
logger.info(f"VR180 Debug: Lower confidence detection found {len(debug_detections)} total detections")
|
|
return debug_detections
|
|
|
|
def detect_humans_multi_frame(self, video_path: str, frame_indices: List[int],
|
|
scale: float = 1.0) -> Dict[int, List[Dict[str, Any]]]:
|
|
"""
|
|
Detect humans at multiple specific frame indices in a video.
|
|
Used for mid-segment re-detection to improve SAM2 tracking.
|
|
|
|
Args:
|
|
video_path: Path to video file
|
|
frame_indices: List of frame indices to run detection on (e.g., [0, 30, 60, 90])
|
|
scale: Scale factor for frame processing
|
|
|
|
Returns:
|
|
Dictionary mapping frame_index -> list of detection dictionaries
|
|
"""
|
|
if not frame_indices:
|
|
logger.warning("No frame indices provided for multi-frame detection")
|
|
return {}
|
|
|
|
if not os.path.exists(video_path):
|
|
logger.error(f"Video file not found: {video_path}")
|
|
return {}
|
|
|
|
logger.info(f"Mid-segment Detection: Running YOLO on {len(frame_indices)} frames: {frame_indices}")
|
|
|
|
cap = cv2.VideoCapture(video_path)
|
|
if not cap.isOpened():
|
|
logger.error(f"Could not open video: {video_path}")
|
|
return {}
|
|
|
|
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
fps = cap.get(cv2.CAP_PROP_FPS) or 30.0
|
|
|
|
# Filter out frame indices that are beyond video length
|
|
valid_frame_indices = [idx for idx in frame_indices if 0 <= idx < total_frames]
|
|
if len(valid_frame_indices) != len(frame_indices):
|
|
invalid_frames = [idx for idx in frame_indices if idx not in valid_frame_indices]
|
|
logger.warning(f"Mid-segment Detection: Skipping invalid frame indices: {invalid_frames} (video has {total_frames} frames)")
|
|
|
|
multi_frame_detections = {}
|
|
|
|
for frame_idx in valid_frame_indices:
|
|
# Seek to specific frame
|
|
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_idx)
|
|
ret, frame = cap.read()
|
|
|
|
if not ret:
|
|
logger.warning(f"Mid-segment Detection: Could not read frame {frame_idx}")
|
|
continue
|
|
|
|
# Scale frame if needed
|
|
if scale != 1.0:
|
|
frame = cv2.resize(frame, None, fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR)
|
|
|
|
# Run YOLO detection on this frame
|
|
detections = self.detect_humans_in_frame(frame)
|
|
multi_frame_detections[frame_idx] = detections
|
|
|
|
# Log detection results
|
|
time_seconds = frame_idx / fps
|
|
logger.info(f"Mid-segment Detection: Frame {frame_idx} (t={time_seconds:.1f}s): {len(detections)} humans detected")
|
|
|
|
for i, detection in enumerate(detections):
|
|
bbox = detection['bbox']
|
|
conf = detection['confidence']
|
|
logger.debug(f"Mid-segment Detection: Frame {frame_idx}, Human {i+1}: bbox={bbox}, conf={conf:.3f}")
|
|
|
|
cap.release()
|
|
|
|
total_detections = sum(len(dets) for dets in multi_frame_detections.values())
|
|
logger.info(f"Mid-segment Detection: Complete - {total_detections} total detections across {len(valid_frame_indices)} frames")
|
|
|
|
return multi_frame_detections
|
|
|
|
def process_segments_batch(self, segments_info: List[dict], detect_segments: List[int],
|
|
scale: float = 0.5) -> Dict[int, List[Dict[str, Any]]]:
|
|
"""
|
|
Process multiple segments for human detection.
|
|
|
|
Args:
|
|
segments_info: List of segment information dictionaries
|
|
detect_segments: List of segment indices to process
|
|
scale: Scale factor for processing
|
|
|
|
Returns:
|
|
Dictionary mapping segment index to detection results
|
|
"""
|
|
results = {}
|
|
|
|
for segment_info in segments_info:
|
|
segment_idx = segment_info['index']
|
|
|
|
# Skip if not in detect_segments list
|
|
if detect_segments != 'all' and segment_idx not in detect_segments:
|
|
continue
|
|
|
|
video_path = segment_info['video_file']
|
|
detection_file = os.path.join(segment_info['directory'], "yolo_detections")
|
|
|
|
# Skip if already processed
|
|
if os.path.exists(detection_file):
|
|
logger.info(f"Segment {segment_idx} already has detections, skipping")
|
|
detections = self.load_detections_from_file(detection_file)
|
|
results[segment_idx] = detections
|
|
continue
|
|
|
|
# Run detection
|
|
logger.info(f"Processing segment {segment_idx} for human detection")
|
|
detections = self.detect_humans_in_video_first_frame(video_path, scale)
|
|
|
|
# Save results
|
|
self.save_detections_to_file(detections, detection_file)
|
|
results[segment_idx] = detections
|
|
|
|
return results
|
|
|
|
def convert_detections_to_sam2_prompts(self, detections: List[Dict[str, Any]],
|
|
frame_width: int) -> List[Dict[str, Any]]:
|
|
"""
|
|
Convert YOLO detections to SAM2-compatible prompts for VR180 SBS video.
|
|
For VR180, we expect 2 real detections (left and right eye views), not mirrored ones.
|
|
|
|
Args:
|
|
detections: List of YOLO detection results
|
|
frame_width: Width of the video frame
|
|
|
|
Returns:
|
|
List of SAM2 prompt dictionaries with obj_id and bbox
|
|
"""
|
|
if not detections:
|
|
logger.warning("No detections provided for SAM2 prompt conversion")
|
|
return []
|
|
|
|
half_frame_width = frame_width // 2
|
|
prompts = []
|
|
|
|
logger.info(f"VR180 SBS Debug: Converting {len(detections)} detections for frame width {frame_width}")
|
|
logger.info(f"VR180 SBS Debug: Half frame width = {half_frame_width}")
|
|
|
|
# Sort detections by x-coordinate to get consistent left/right assignment
|
|
sorted_detections = sorted(detections, key=lambda x: x['bbox'][0])
|
|
|
|
# Analyze detections by frame half
|
|
left_detections = []
|
|
right_detections = []
|
|
|
|
for i, detection in enumerate(sorted_detections):
|
|
bbox = detection['bbox'].copy()
|
|
center_x = (bbox[0] + bbox[2]) / 2
|
|
pixel_range = f"{bbox[0]:.0f}-{bbox[2]:.0f}"
|
|
|
|
if center_x < half_frame_width:
|
|
left_detections.append((detection, i, pixel_range))
|
|
side = "LEFT"
|
|
else:
|
|
right_detections.append((detection, i, pixel_range))
|
|
side = "RIGHT"
|
|
|
|
logger.info(f"VR180 SBS Debug: Detection {i}: pixels {pixel_range}, center_x={center_x:.1f}, side={side}")
|
|
|
|
# VR180 SBS Format Validation
|
|
logger.info(f"VR180 SBS Debug: Found {len(left_detections)} LEFT detections, {len(right_detections)} RIGHT detections")
|
|
|
|
# Analyze confidence scores
|
|
if left_detections:
|
|
left_confidences = [det[0]['confidence'] for det in left_detections]
|
|
logger.info(f"VR180 SBS Debug: LEFT eye confidences: {[f'{c:.3f}' for c in left_confidences]}")
|
|
|
|
if right_detections:
|
|
right_confidences = [det[0]['confidence'] for det in right_detections]
|
|
logger.info(f"VR180 SBS Debug: RIGHT eye confidences: {[f'{c:.3f}' for c in right_confidences]}")
|
|
|
|
if len(right_detections) == 0:
|
|
logger.warning(f"VR180 SBS Warning: No detections found in RIGHT eye view (pixels {half_frame_width}-{frame_width})")
|
|
logger.warning(f"VR180 SBS Warning: This may indicate:")
|
|
logger.warning(f" 1. Person not visible in right eye view")
|
|
logger.warning(f" 2. YOLO confidence threshold ({self.confidence_threshold}) too high")
|
|
logger.warning(f" 3. VR180 SBS format issue")
|
|
logger.warning(f" 4. Right eye view quality/lighting problems")
|
|
logger.warning(f"VR180 SBS Suggestion: Try lowering yolo_confidence to 0.3-0.4 in config")
|
|
|
|
if len(left_detections) == 0:
|
|
logger.warning(f"VR180 SBS Warning: No detections found in LEFT eye view (pixels 0-{half_frame_width})")
|
|
|
|
# Additional validation for VR180 SBS expectations
|
|
total_detections = len(left_detections) + len(right_detections)
|
|
if total_detections == 1:
|
|
logger.warning(f"VR180 SBS Warning: Only 1 detection found - expected 2 for proper VR180 SBS")
|
|
elif total_detections > 2:
|
|
logger.warning(f"VR180 SBS Warning: {total_detections} detections found - will use only first 2")
|
|
|
|
# Assign object IDs sequentially, regardless of which half they're in
|
|
# This ensures we always get Object 1 and Object 2 for up to 2 detections
|
|
obj_id = 1
|
|
|
|
# Process up to 2 detections total (left + right combined)
|
|
all_detections = sorted_detections[:2]
|
|
|
|
for i, detection in enumerate(all_detections):
|
|
bbox = detection['bbox'].copy()
|
|
center_x = (bbox[0] + bbox[2]) / 2
|
|
pixel_range = f"{bbox[0]:.0f}-{bbox[2]:.0f}"
|
|
|
|
# Determine which eye view this detection is in
|
|
if center_x < half_frame_width:
|
|
eye_view = "LEFT"
|
|
else:
|
|
eye_view = "RIGHT"
|
|
|
|
prompts.append({
|
|
'obj_id': obj_id,
|
|
'bbox': bbox,
|
|
'confidence': detection['confidence']
|
|
})
|
|
|
|
logger.info(f"VR180 SBS Debug: Added {eye_view} eye detection as SAM2 Object {obj_id}")
|
|
logger.info(f"VR180 SBS Debug: Object {obj_id} bbox: {bbox} (pixels {pixel_range})")
|
|
|
|
obj_id += 1
|
|
|
|
logger.info(f"VR180 SBS Debug: Final result - {len(detections)} YOLO detections → {len(prompts)} SAM2 prompts")
|
|
|
|
# Verify we have the expected objects
|
|
obj_ids = [p['obj_id'] for p in prompts]
|
|
logger.info(f"VR180 SBS Debug: SAM2 Object IDs created: {obj_ids}")
|
|
|
|
return prompts
|
|
|
|
def convert_yolo_masks_to_video_segments(self, detections: List[Dict[str, Any]],
|
|
frame_width: int, target_frame_shape: Tuple[int, int] = None) -> Optional[Dict[int, Dict[int, np.ndarray]]]:
|
|
"""
|
|
Convert YOLO segmentation masks to SAM2-compatible video segments format.
|
|
This allows using YOLO masks directly without SAM2 processing.
|
|
|
|
Args:
|
|
detections: List of YOLO detection results with masks
|
|
frame_width: Width of the video frame for VR180 object ID assignment
|
|
target_frame_shape: Target shape (height, width) for mask resizing
|
|
|
|
Returns:
|
|
Video segments dictionary compatible with SAM2 output format, or None if no masks
|
|
"""
|
|
if not detections:
|
|
logger.warning("No detections provided for mask conversion")
|
|
return None
|
|
|
|
# Check if any detections have masks
|
|
detections_with_masks = [d for d in detections if d.get('has_mask', False)]
|
|
if not detections_with_masks:
|
|
logger.warning("No detections have masks - YOLO segmentation may not be working")
|
|
return None
|
|
|
|
logger.info(f"YOLO Mask Conversion: Converting {len(detections_with_masks)} YOLO masks to video segments format")
|
|
|
|
half_frame_width = frame_width // 2
|
|
video_segments = {}
|
|
|
|
# Create frame 0 with converted masks
|
|
frame_masks = {}
|
|
obj_id = 1
|
|
|
|
# Sort detections by x-coordinate for consistent VR180 SBS assignment
|
|
sorted_detections = sorted(detections_with_masks, key=lambda x: x['bbox'][0])
|
|
|
|
for i, detection in enumerate(sorted_detections[:2]): # Take up to 2 humans
|
|
mask = detection['mask']
|
|
bbox = detection['bbox']
|
|
center_x = (bbox[0] + bbox[2]) / 2
|
|
|
|
# Assign sequential object IDs (similar to prompt conversion logic)
|
|
current_obj_id = obj_id
|
|
|
|
# Determine which eye view for logging
|
|
if center_x < half_frame_width:
|
|
eye_view = "LEFT"
|
|
else:
|
|
eye_view = "RIGHT"
|
|
|
|
# Resize mask to target frame shape if specified
|
|
if target_frame_shape and mask.shape != target_frame_shape:
|
|
mask_resized = cv2.resize(mask.astype(np.float32), (target_frame_shape[1], target_frame_shape[0]), interpolation=cv2.INTER_NEAREST)
|
|
mask = (mask_resized > 0.5).astype(bool)
|
|
else:
|
|
mask = mask.astype(bool)
|
|
|
|
frame_masks[current_obj_id] = mask
|
|
|
|
logger.info(f"YOLO Mask Conversion: {eye_view} eye detection -> Object {current_obj_id}, mask_shape={mask.shape}, pixels={np.sum(mask)}")
|
|
|
|
obj_id += 1 # Always increment for next detection
|
|
|
|
# Store masks in video segments format (single frame)
|
|
video_segments[0] = frame_masks
|
|
|
|
total_objects = len(frame_masks)
|
|
total_pixels = sum(np.sum(mask) for mask in frame_masks.values())
|
|
logger.info(f"YOLO Mask Conversion: Created video segments with {total_objects} objects, {total_pixels} total mask pixels")
|
|
|
|
return video_segments
|
|
|
|
def save_debug_frame_with_detections(self, frame: np.ndarray, detections: List[Dict[str, Any]],
|
|
output_path: str, prompts: List[Dict[str, Any]] = None) -> bool:
|
|
"""
|
|
Save a debug frame with YOLO detections and SAM2 prompts overlaid as bounding boxes.
|
|
|
|
Args:
|
|
frame: Input frame (BGR format from OpenCV)
|
|
detections: List of detection dictionaries with bbox and confidence
|
|
output_path: Path to save the debug image
|
|
prompts: Optional list of SAM2 prompt dictionaries with obj_id and bbox
|
|
|
|
Returns:
|
|
True if saved successfully
|
|
"""
|
|
try:
|
|
debug_frame = frame.copy()
|
|
|
|
# Draw masks (if available) or bounding boxes for each detection
|
|
for i, detection in enumerate(detections):
|
|
bbox = detection['bbox']
|
|
confidence = detection['confidence']
|
|
has_mask = detection.get('has_mask', False)
|
|
|
|
# Extract coordinates
|
|
x1, y1, x2, y2 = map(int, bbox)
|
|
|
|
# Choose color based on confidence (green for high, yellow for medium, red for low)
|
|
if confidence >= 0.8:
|
|
color = (0, 255, 0) # Green
|
|
elif confidence >= 0.6:
|
|
color = (0, 255, 255) # Yellow
|
|
else:
|
|
color = (0, 0, 255) # Red
|
|
|
|
if has_mask and 'mask' in detection:
|
|
# Draw segmentation mask
|
|
mask = detection['mask']
|
|
|
|
# Resize mask to match frame if needed
|
|
if mask.shape != debug_frame.shape[:2]:
|
|
mask = cv2.resize(mask.astype(np.float32), (debug_frame.shape[1], debug_frame.shape[0]), interpolation=cv2.INTER_NEAREST)
|
|
mask = mask > 0.5
|
|
|
|
mask = mask.astype(bool)
|
|
|
|
# Apply colored overlay with transparency
|
|
overlay = debug_frame.copy()
|
|
overlay[mask] = color
|
|
cv2.addWeighted(overlay, 0.3, debug_frame, 0.7, 0, debug_frame)
|
|
|
|
# Draw mask outline
|
|
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
cv2.drawContours(debug_frame, contours, -1, color, 2)
|
|
|
|
# Prepare label text for segmentation
|
|
label = f"Person {i+1}: {confidence:.2f} (MASK)"
|
|
else:
|
|
# Draw bounding box (detection mode or no mask available)
|
|
cv2.rectangle(debug_frame, (x1, y1), (x2, y2), color, 2)
|
|
|
|
# Prepare label text for detection
|
|
label = f"Person {i+1}: {confidence:.2f} (BBOX)"
|
|
|
|
label_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)[0]
|
|
|
|
# Draw label background
|
|
cv2.rectangle(debug_frame,
|
|
(x1, y1 - label_size[1] - 10),
|
|
(x1 + label_size[0], y1),
|
|
color, -1)
|
|
|
|
# Draw label text
|
|
cv2.putText(debug_frame, label,
|
|
(x1, y1 - 5),
|
|
cv2.FONT_HERSHEY_SIMPLEX, 0.6,
|
|
(255, 255, 255), 2)
|
|
|
|
# Draw SAM2 prompts if provided (with different colors/style)
|
|
if prompts:
|
|
for prompt in prompts:
|
|
obj_id = prompt['obj_id']
|
|
bbox = prompt['bbox']
|
|
|
|
# Extract coordinates
|
|
x1, y1, x2, y2 = map(int, bbox)
|
|
|
|
# Use different colors for each object ID
|
|
if obj_id == 1:
|
|
prompt_color = (0, 255, 0) # Green for Object 1
|
|
elif obj_id == 2:
|
|
prompt_color = (255, 0, 0) # Blue for Object 2
|
|
else:
|
|
prompt_color = (255, 255, 0) # Cyan for others
|
|
|
|
# Draw thicker, dashed-style border for SAM2 prompts
|
|
thickness = 3
|
|
cv2.rectangle(debug_frame, (x1-2, y1-2), (x2+2, y2+2), prompt_color, thickness)
|
|
|
|
# Add SAM2 object ID label
|
|
sam_label = f"SAM2 Obj {obj_id}"
|
|
label_size = cv2.getTextSize(sam_label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 2)[0]
|
|
|
|
# Draw label background
|
|
cv2.rectangle(debug_frame,
|
|
(x1-2, y2+5),
|
|
(x1-2 + label_size[0], y2+5 + label_size[1] + 5),
|
|
prompt_color, -1)
|
|
|
|
# Draw label text
|
|
cv2.putText(debug_frame, sam_label,
|
|
(x1-2, y2+5 + label_size[1]),
|
|
cv2.FONT_HERSHEY_SIMPLEX, 0.5,
|
|
(255, 255, 255), 2)
|
|
|
|
# Draw VR180 SBS boundary line (center line separating left and right eye views)
|
|
frame_height, frame_width = debug_frame.shape[:2]
|
|
center_x = frame_width // 2
|
|
cv2.line(debug_frame, (center_x, 0), (center_x, frame_height), (0, 255, 255), 3) # Yellow line
|
|
|
|
# Add VR180 SBS labels
|
|
cv2.putText(debug_frame, "LEFT EYE", (10, frame_height - 20),
|
|
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2)
|
|
cv2.putText(debug_frame, "RIGHT EYE", (center_x + 10, frame_height - 20),
|
|
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2)
|
|
|
|
# Add summary text at top with mode information
|
|
mode_text = f"YOLO Mode: {self.mode.upper()}"
|
|
masks_available = sum(1 for d in detections if d.get('has_mask', False))
|
|
|
|
if self.supports_segmentation and masks_available > 0:
|
|
summary = f"VR180 SBS: {len(detections)} detections → {masks_available} MASKS (for SAM2 propagation)"
|
|
else:
|
|
summary = f"VR180 SBS: {len(detections)} detections → {len(prompts) if prompts else 0} SAM2 prompts"
|
|
|
|
cv2.putText(debug_frame, mode_text,
|
|
(10, 30),
|
|
cv2.FONT_HERSHEY_SIMPLEX, 0.8,
|
|
(0, 255, 255), 2) # Yellow for mode
|
|
cv2.putText(debug_frame, summary,
|
|
(10, 60),
|
|
cv2.FONT_HERSHEY_SIMPLEX, 1.0,
|
|
(255, 255, 255), 2)
|
|
|
|
# Add frame dimensions info
|
|
dims_info = f"Frame: {frame_width}x{frame_height}, Center: {center_x}"
|
|
cv2.putText(debug_frame, dims_info,
|
|
(10, 90),
|
|
cv2.FONT_HERSHEY_SIMPLEX, 0.6,
|
|
(255, 255, 255), 2)
|
|
|
|
# Save debug frame
|
|
success = cv2.imwrite(output_path, debug_frame)
|
|
if success:
|
|
logger.info(f"Saved YOLO debug frame to {output_path}")
|
|
else:
|
|
logger.error(f"Failed to save debug frame to {output_path}")
|
|
|
|
return success
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error creating debug frame: {e}")
|
|
return False |