Compare commits
3 Commits
6617acb1c9
...
sbs
| Author | SHA1 | Date | |
|---|---|---|---|
| b97a3752a7 | |||
| 0057017ac4 | |||
| 70044e1b10 |
230
claude.md
Normal file
230
claude.md
Normal file
@@ -0,0 +1,230 @@
|
|||||||
|
# YOLO + SAM2 VR180 Video Processing Pipeline - LLM Guide
|
||||||
|
|
||||||
|
## Project Overview
|
||||||
|
|
||||||
|
This repository implements an automated video processing pipeline specifically designed for **VR180 side-by-side stereo videos**. The system detects and segments humans in video content, replacing backgrounds with green screen for post-production compositing. The pipeline is optimized for long VR videos by splitting them into manageable segments, processing each segment independently, and then reassembling the final output.
|
||||||
|
|
||||||
|
## Core Purpose
|
||||||
|
|
||||||
|
The primary goal is to automatically create green screen videos from VR180 content where:
|
||||||
|
- **Left eye view** (left half of frame) contains humans as Object 1 (green masks)
|
||||||
|
- **Right eye view** (right half of frame) contains humans as Object 2 (blue masks)
|
||||||
|
- Background is replaced with pure green (RGB: 0,255,0) for chroma keying
|
||||||
|
- Original audio is preserved throughout the process
|
||||||
|
- Processing handles videos of any length through segmentation
|
||||||
|
|
||||||
|
## Architecture Overview
|
||||||
|
|
||||||
|
### Pipeline Stages
|
||||||
|
|
||||||
|
1. **Video Segmentation** (`core/video_splitter.py`)
|
||||||
|
- Splits long videos into 5-second segments using FFmpeg
|
||||||
|
- Creates organized directory structure: `segment_0/`, `segment_1/`, etc.
|
||||||
|
- Preserves timestamps and forces keyframes for clean cuts
|
||||||
|
|
||||||
|
2. **Human Detection** (`core/yolo_detector.py`)
|
||||||
|
- Uses YOLOv8 for robust human detection in VR180 format
|
||||||
|
- Supports both detection mode (bounding boxes) and segmentation mode (direct masks)
|
||||||
|
- Automatically assigns humans to left/right eye based on position in frame
|
||||||
|
- Saves detection results for reuse and debugging
|
||||||
|
|
||||||
|
3. **Mask Generation** (`core/sam2_processor.py`)
|
||||||
|
- Uses Meta's SAM2 (Segment Anything Model 2) for precise segmentation
|
||||||
|
- Propagates masks across all frames in each segment
|
||||||
|
- Supports mask continuity between segments using previous segment's final masks
|
||||||
|
- Handles VR180 stereo tracking with separate object IDs for each eye
|
||||||
|
|
||||||
|
4. **Green Screen Processing** (`core/mask_processor.py`)
|
||||||
|
- Applies generated masks to isolate humans
|
||||||
|
- Replaces background with green screen
|
||||||
|
- Uses GPU acceleration (CuPy) for fast processing
|
||||||
|
- Maintains original video quality and framerate
|
||||||
|
|
||||||
|
5. **Video Assembly** (`core/video_assembler.py`)
|
||||||
|
- Concatenates all processed segments into final video
|
||||||
|
- Preserves original audio track from input video
|
||||||
|
- Uses hardware encoding (NVENC) when available
|
||||||
|
|
||||||
|
### Key Components
|
||||||
|
|
||||||
|
```
|
||||||
|
samyolo_on_segments/
|
||||||
|
├── main.py # Entry point - orchestrates the pipeline
|
||||||
|
├── config.yaml # Configuration file (YAML format)
|
||||||
|
├── core/ # Core processing modules
|
||||||
|
│ ├── config_loader.py # Configuration management
|
||||||
|
│ ├── video_splitter.py # FFmpeg-based video segmentation
|
||||||
|
│ ├── yolo_detector.py # YOLO human detection (detection/segmentation modes)
|
||||||
|
│ ├── sam2_processor.py # SAM2 mask generation and propagation
|
||||||
|
│ ├── mask_processor.py # Green screen application
|
||||||
|
│ └── video_assembler.py # Final video concatenation
|
||||||
|
├── utils/ # Utility functions
|
||||||
|
│ ├── file_utils.py # File system operations
|
||||||
|
│ ├── logging_utils.py # Logging configuration
|
||||||
|
│ └── status_utils.py # Progress monitoring
|
||||||
|
└── models/ # Model storage (created by download_models.py)
|
||||||
|
├── sam2/ # SAM2 checkpoints and configs
|
||||||
|
└── yolo/ # YOLO model weights
|
||||||
|
```
|
||||||
|
|
||||||
|
## VR180 Specific Features
|
||||||
|
|
||||||
|
### Stereo Video Handling
|
||||||
|
- Automatically detects humans in left and right eye views
|
||||||
|
- Assigns Object ID 1 to left eye humans (green masks)
|
||||||
|
- Assigns Object ID 2 to right eye humans (blue masks)
|
||||||
|
- Maintains stereo correspondence throughout segments
|
||||||
|
|
||||||
|
### Frame Division Logic
|
||||||
|
- Frame width is divided in half to separate left/right views
|
||||||
|
- Human detection centers are used to determine eye assignment
|
||||||
|
- If only one human is detected, it may be duplicated to both eyes (configurable)
|
||||||
|
|
||||||
|
## Configuration System
|
||||||
|
|
||||||
|
The pipeline is controlled via `config.yaml` with these key sections:
|
||||||
|
|
||||||
|
### Essential Settings
|
||||||
|
```yaml
|
||||||
|
input:
|
||||||
|
video_path: "/path/to/vr180_video.mp4"
|
||||||
|
|
||||||
|
output:
|
||||||
|
directory: "/path/to/output/"
|
||||||
|
filename: "greenscreen_output.mp4"
|
||||||
|
|
||||||
|
processing:
|
||||||
|
segment_duration: 5 # Seconds per segment
|
||||||
|
inference_scale: 0.5 # Scale for faster processing
|
||||||
|
yolo_confidence: 0.6 # Detection threshold
|
||||||
|
detect_segments: "all" # Which segments to process
|
||||||
|
|
||||||
|
models:
|
||||||
|
yolo_model: "models/yolo/yolov8n.pt"
|
||||||
|
sam2_checkpoint: "models/sam2/checkpoints/sam2.1_hiera_large.pt"
|
||||||
|
sam2_config: "models/sam2/configs/sam2.1/sam2.1_hiera_l.yaml"
|
||||||
|
```
|
||||||
|
|
||||||
|
### Advanced Options
|
||||||
|
- **YOLO Modes**: Switch between detection (bboxes) and segmentation (direct masks)
|
||||||
|
- **Mid-segment Detection**: Re-detect humans at intervals within segments
|
||||||
|
- **Mask Quality**: Temporal smoothing, morphological operations, edge refinement
|
||||||
|
- **Debug Outputs**: Save detection visualizations and first-frame masks
|
||||||
|
|
||||||
|
## Processing Flow
|
||||||
|
|
||||||
|
### For First Segment (segment_0):
|
||||||
|
1. Load first frame at inference scale
|
||||||
|
2. Run YOLO to detect humans
|
||||||
|
3. Convert detections to SAM2 prompts (or use YOLO masks directly)
|
||||||
|
4. Initialize SAM2 with prompts/masks
|
||||||
|
5. Propagate masks through all frames
|
||||||
|
6. Apply green screen and save output
|
||||||
|
7. Save final mask for next segment
|
||||||
|
|
||||||
|
### For Subsequent Segments:
|
||||||
|
1. Check if YOLO detection is requested for this segment
|
||||||
|
2. If yes: Use YOLO detection (same as first segment)
|
||||||
|
3. If no: Load previous segment's final mask
|
||||||
|
4. Initialize SAM2 with previous masks
|
||||||
|
5. Continue propagation through segment
|
||||||
|
6. Apply green screen and save output
|
||||||
|
|
||||||
|
### Fallback Logic:
|
||||||
|
- If no previous mask exists, searches backwards through segments
|
||||||
|
- First segment always requires YOLO detection
|
||||||
|
- Missing detections can be recovered in later segments
|
||||||
|
|
||||||
|
## Model Support
|
||||||
|
|
||||||
|
### YOLO Models
|
||||||
|
- **Detection**: yolov8n.pt, yolov8s.pt, yolov8m.pt (bounding boxes only)
|
||||||
|
- **Segmentation**: yolov8n-seg.pt, yolov8s-seg.pt (direct mask output)
|
||||||
|
|
||||||
|
### SAM2 Models
|
||||||
|
- **Tiny**: sam2.1_hiera_tiny.pt (fastest, lowest quality)
|
||||||
|
- **Small**: sam2.1_hiera_small.pt
|
||||||
|
- **Base+**: sam2.1_hiera_base_plus.pt
|
||||||
|
- **Large**: sam2.1_hiera_large.pt (best quality, slowest)
|
||||||
|
|
||||||
|
## Key Implementation Details
|
||||||
|
|
||||||
|
### GPU Optimization
|
||||||
|
- CUDA device selection with MPS fallback
|
||||||
|
- CuPy for GPU-accelerated mask operations
|
||||||
|
- NVENC hardware encoding support
|
||||||
|
- Batch processing where possible
|
||||||
|
|
||||||
|
### Memory Management
|
||||||
|
- Segments processed sequentially to limit memory usage
|
||||||
|
- Explicit garbage collection between segments
|
||||||
|
- Low-resolution inference with high-resolution rendering
|
||||||
|
- Configurable scale factors for different stages
|
||||||
|
|
||||||
|
### Error Handling
|
||||||
|
- Graceful fallback when masks are unavailable
|
||||||
|
- Segment-level recovery (can restart individual segments)
|
||||||
|
- Comprehensive logging at all stages
|
||||||
|
- Status checking and cleanup utilities
|
||||||
|
|
||||||
|
## Debugging Features
|
||||||
|
|
||||||
|
### Status Monitoring
|
||||||
|
```bash
|
||||||
|
python main.py --config config.yaml --status
|
||||||
|
```
|
||||||
|
|
||||||
|
### Segment Cleanup
|
||||||
|
```bash
|
||||||
|
python main.py --config config.yaml --cleanup-segment 5
|
||||||
|
```
|
||||||
|
|
||||||
|
### Debug Outputs
|
||||||
|
- `yolo_debug.jpg`: Bounding box visualizations
|
||||||
|
- `first_frame_detection.jpg`: Initial mask visualization
|
||||||
|
- `mask.png`: Final segment mask for continuity
|
||||||
|
- `yolo_detections`: Saved detection coordinates
|
||||||
|
|
||||||
|
## Common Issues and Solutions
|
||||||
|
|
||||||
|
### No Right Eye Detections in VR180
|
||||||
|
- Lower `yolo_confidence` threshold (try 0.3-0.4)
|
||||||
|
- Enable debug mode to analyze detection confidence
|
||||||
|
- Check if person is actually visible in right eye view
|
||||||
|
|
||||||
|
### Mask Propagation Failures
|
||||||
|
- Ensure first segment has successful YOLO detections
|
||||||
|
- Check previous segment's mask.png exists
|
||||||
|
- Consider re-running YOLO on problem segments
|
||||||
|
|
||||||
|
### Memory Issues
|
||||||
|
- Reduce `inference_scale` (try 0.25)
|
||||||
|
- Use smaller models (tiny/small variants)
|
||||||
|
- Process fewer segments at once
|
||||||
|
|
||||||
|
## Development Notes
|
||||||
|
|
||||||
|
### Adding Features
|
||||||
|
- All core modules inherit from base classes in `core/`
|
||||||
|
- Configuration is centralized through `ConfigLoader`
|
||||||
|
- Logging uses Python's standard logging module
|
||||||
|
- File operations go through `utils/file_utils.py`
|
||||||
|
|
||||||
|
### Testing Components
|
||||||
|
- Each module can be tested independently
|
||||||
|
- Use `--status` flag to check processing state
|
||||||
|
- Debug outputs help verify each stage
|
||||||
|
|
||||||
|
### Performance Tuning
|
||||||
|
- Adjust `inference_scale` for speed vs quality
|
||||||
|
- Use `detect_segments` to process only key frames
|
||||||
|
- Enable `use_nvenc` for hardware encoding
|
||||||
|
- Consider `vos_optimized` mode for SAM2 (experimental)
|
||||||
|
|
||||||
|
## Original Monolithic Script
|
||||||
|
|
||||||
|
The project includes the original working script in `spec.md` (lines 200-811) as a reference implementation. This script works but processes videos monolithically. The current modular architecture maintains the same core logic while adding:
|
||||||
|
- Better error handling and recovery
|
||||||
|
- Configurable processing pipeline
|
||||||
|
- Debug and monitoring capabilities
|
||||||
|
- Cleaner code organization
|
||||||
117
config.yaml
117
config.yaml
@@ -1,62 +1,137 @@
|
|||||||
# YOLO + SAM2 Video Processing Configuration
|
# YOLO + SAM2 Video Processing Configuration
|
||||||
|
# This file serves as a complete reference for all available settings.
|
||||||
|
|
||||||
input:
|
input:
|
||||||
|
# Full path to the input video file.
|
||||||
video_path: "/path/to/input/video.mp4"
|
video_path: "/path/to/input/video.mp4"
|
||||||
|
|
||||||
output:
|
output:
|
||||||
|
# Directory where all output files and segments will be stored.
|
||||||
directory: "/path/to/output/"
|
directory: "/path/to/output/"
|
||||||
|
# Filename for the final assembled video.
|
||||||
filename: "processed_video.mp4"
|
filename: "processed_video.mp4"
|
||||||
|
|
||||||
processing:
|
processing:
|
||||||
# Duration of each video segment in seconds
|
# Duration of each video segment in seconds. Shorter segments use less memory.
|
||||||
segment_duration: 5
|
segment_duration: 5
|
||||||
|
|
||||||
# Scale factor for SAM2 inference (0.5 = half resolution)
|
# Scale factor for SAM2 inference (e.g., 0.5 = half resolution).
|
||||||
|
# Lower values are faster but may reduce mask quality.
|
||||||
inference_scale: 0.5
|
inference_scale: 0.5
|
||||||
|
|
||||||
# YOLO detection confidence threshold
|
# YOLO detection confidence threshold (0.0 to 1.0).
|
||||||
yolo_confidence: 0.6
|
yolo_confidence: 0.6
|
||||||
|
|
||||||
# Which segments to run YOLO detection on
|
# Which segments to run YOLO detection on.
|
||||||
# Options: "all", [0, 5, 10], or [] for default (all)
|
# Options: "all", a list of specific segment indices (e.g., [0, 10, 20]), or [] for default ("all").
|
||||||
detect_segments: "all"
|
detect_segments: "all"
|
||||||
|
|
||||||
models:
|
# --- VR180 Stereo Processing ---
|
||||||
# YOLO model path - can be pretrained (yolov8n.pt) or custom path
|
# Enables special logic for VR180 SBS video. When false, video is treated as a single view.
|
||||||
yolo_model: "models/yolo/yolov8n.pt"
|
separate_eye_processing: false
|
||||||
|
|
||||||
# SAM2 model configuration
|
# Threshold for stereo mask agreement (Intersection over Union).
|
||||||
sam2_checkpoint: "models/sam2/checkpoints/sam2.1_hiera_large.pt"
|
# A value of 0.5 means masks must overlap by 50% to be considered a pair.
|
||||||
sam2_config: "models/sam2/configs/sam2.1/sam2.1_hiera_l.yaml"
|
stereo_iou_threshold: 0.5
|
||||||
|
|
||||||
|
# Factor to reduce YOLO confidence by if no stereo pairs are found on the first try (e.g., 0.8 = 20% reduction).
|
||||||
|
confidence_reduction_factor: 0.8
|
||||||
|
|
||||||
|
# If no humans are detected in a segment, create a full green screen video.
|
||||||
|
# Only used when separate_eye_processing is true.
|
||||||
|
enable_greenscreen_fallback: true
|
||||||
|
|
||||||
|
# Pixel overlap between left/right eyes for smoother blending at the center seam.
|
||||||
|
eye_overlap_pixels: 0
|
||||||
|
|
||||||
|
models:
|
||||||
|
# YOLO mode: "detection" (for bounding boxes) or "segmentation" (for direct masks).
|
||||||
|
# "segmentation" is generally recommended as it provides initial masks to SAM2.
|
||||||
|
yolo_mode: "segmentation"
|
||||||
|
|
||||||
|
# Path to the YOLO model for "detection" mode.
|
||||||
|
yolo_detection_model: "models/yolo/yolo11l.pt"
|
||||||
|
# Path to the YOLO model for "segmentation" mode.
|
||||||
|
yolo_segmentation_model: "models/yolo/yolo11x-seg.pt"
|
||||||
|
|
||||||
|
# --- SAM2 Model Configuration ---
|
||||||
|
sam2_checkpoint: "models/sam2/checkpoints/sam2.1_hiera_small.pt"
|
||||||
|
sam2_config: "models/sam2/configs/sam2.1/sam2.1_hiera_s.yaml"
|
||||||
|
# (Experimental) Use optimized VOS predictor for a significant speedup. Requires PyTorch 2.5.1+.
|
||||||
|
sam2_vos_optimized: false
|
||||||
|
|
||||||
video:
|
video:
|
||||||
# Use NVIDIA hardware encoding (requires NVENC-capable GPU)
|
# Use NVIDIA's NVENC for hardware-accelerated video encoding.
|
||||||
use_nvenc: true
|
use_nvenc: true
|
||||||
|
|
||||||
# Output video bitrate
|
# Bitrate for the output video (e.g., "25M", "50M").
|
||||||
output_bitrate: "50M"
|
output_bitrate: "50M"
|
||||||
|
|
||||||
# Preserve original audio track
|
# If true, the audio track from the input video will be copied to the final output.
|
||||||
preserve_audio: true
|
preserve_audio: true
|
||||||
|
|
||||||
# Force keyframes for better segment boundaries
|
# Force keyframes at the start of each segment for clean cuts. Recommended to keep true.
|
||||||
force_keyframes: true
|
force_keyframes: true
|
||||||
|
|
||||||
advanced:
|
advanced:
|
||||||
# Green screen color (RGB values)
|
# RGB color for the green screen background.
|
||||||
green_color: [0, 255, 0]
|
green_color: [0, 255, 0]
|
||||||
|
|
||||||
# Blue screen color for second object (RGB values)
|
# RGB color for the second object's mask (typically the right eye in VR180).
|
||||||
blue_color: [255, 0, 0]
|
blue_color: [255, 0, 0]
|
||||||
|
|
||||||
# YOLO human class ID (0 for COCO person class)
|
# The class ID for humans in the YOLO model (COCO default is 0 for "person").
|
||||||
human_class_id: 0
|
human_class_id: 0
|
||||||
|
|
||||||
# GPU memory management
|
# If true, deletes intermediate files like segment videos after processing.
|
||||||
cleanup_intermediate_files: true
|
cleanup_intermediate_files: true
|
||||||
|
|
||||||
# Logging level (DEBUG, INFO, WARNING, ERROR)
|
# Logging level: DEBUG, INFO, WARNING, ERROR.
|
||||||
log_level: "INFO"
|
log_level: "INFO"
|
||||||
|
|
||||||
# Save debug frames with YOLO detections visualized
|
# If true, saves debug images for YOLO detections.
|
||||||
save_yolo_debug_frames: true
|
save_yolo_debug_frames: true
|
||||||
|
|
||||||
|
# --- Mid-Segment Re-detection ---
|
||||||
|
# Re-run YOLO at intervals within a segment to correct tracking drift.
|
||||||
|
enable_mid_segment_detection: false
|
||||||
|
redetection_interval: 30 # Frames between re-detections.
|
||||||
|
max_redetections_per_segment: 10
|
||||||
|
|
||||||
|
# --- Parallel Processing Optimizations ---
|
||||||
|
# (Experimental) Generate low-res videos for upcoming segments in the background.
|
||||||
|
enable_background_lowres_generation: false
|
||||||
|
max_concurrent_lowres: 2 # Max parallel FFmpeg processes.
|
||||||
|
lowres_segments_ahead: 2 # How many segments to prepare in advance.
|
||||||
|
use_ffmpeg_lowres: true # Use FFmpeg (faster) instead of OpenCV for low-res creation.
|
||||||
|
|
||||||
|
# --- Mask Quality Enhancement Settings ---
|
||||||
|
# These settings allow fine-tuning of the final mask appearance.
|
||||||
|
# Enabling these may increase processing time.
|
||||||
|
mask_processing:
|
||||||
|
# Edge feathering and blurring for smoother transitions.
|
||||||
|
enable_edge_blur: true
|
||||||
|
edge_blur_radius: 3
|
||||||
|
edge_blur_sigma: 0.5
|
||||||
|
|
||||||
|
# Temporal smoothing to reduce mask flickering between frames.
|
||||||
|
enable_temporal_smoothing: false
|
||||||
|
temporal_blend_weight: 0.2
|
||||||
|
temporal_history_frames: 2
|
||||||
|
|
||||||
|
# Clean up small noise and holes in the mask.
|
||||||
|
# Generally not needed when using SAM2, as its masks are high quality.
|
||||||
|
enable_morphological_cleaning: false
|
||||||
|
morphology_kernel_size: 5
|
||||||
|
min_component_size: 500
|
||||||
|
|
||||||
|
# Method for blending the mask edge with the background.
|
||||||
|
# Options: "linear" (fastest), "gaussian", "sigmoid".
|
||||||
|
alpha_blending_mode: "linear"
|
||||||
|
alpha_transition_width: 1
|
||||||
|
|
||||||
|
# Advanced edge-preserving smoothing filter. Slower but can produce higher quality edges.
|
||||||
|
enable_bilateral_filter: false
|
||||||
|
bilateral_d: 9
|
||||||
|
bilateral_sigma_color: 75
|
||||||
|
bilateral_sigma_space: 75
|
||||||
|
|||||||
@@ -1,2 +1,4 @@
|
|||||||
# YOLO + SAM2 Video Processing Pipeline
|
# YOLO + SAM2 Video Processing Pipeline
|
||||||
# Core modules for video processing with human detection and segmentation
|
# Core modules for video processing with human detection and segmentation
|
||||||
|
|
||||||
|
from .eye_processor import EyeProcessor
|
||||||
337
core/async_lowres_preprocessor.py
Normal file
337
core/async_lowres_preprocessor.py
Normal file
@@ -0,0 +1,337 @@
|
|||||||
|
"""
|
||||||
|
Async low-resolution video preprocessor for parallel processing optimization.
|
||||||
|
Creates low-resolution videos in background while main pipeline processes other segments.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import asyncio
|
||||||
|
import subprocess
|
||||||
|
import logging
|
||||||
|
import threading
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import List, Dict, Any, Optional
|
||||||
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
class AsyncLowResPreprocessor:
|
||||||
|
"""
|
||||||
|
Handles async pre-generation of low-resolution videos for SAM2 inference.
|
||||||
|
Uses FFmpeg subprocesses to bypass Python GIL limitations.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, max_concurrent: int = 3, segments_ahead: int = 3, use_ffmpeg: bool = True):
|
||||||
|
"""
|
||||||
|
Initialize async preprocessor.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
max_concurrent: Maximum number of concurrent FFmpeg processes
|
||||||
|
segments_ahead: How many segments to prepare in advance
|
||||||
|
use_ffmpeg: Use FFmpeg instead of OpenCV for better performance
|
||||||
|
"""
|
||||||
|
self.max_concurrent = max_concurrent
|
||||||
|
self.segments_ahead = segments_ahead
|
||||||
|
self.use_ffmpeg = use_ffmpeg
|
||||||
|
self.preparation_tasks = {} # segment_idx -> threading.Thread
|
||||||
|
self.completed_segments = set() # Track completed preparations
|
||||||
|
self.active_threads = [] # Track active background threads
|
||||||
|
|
||||||
|
logger.info(f"AsyncLowResPreprocessor initialized: max_concurrent={max_concurrent}, "
|
||||||
|
f"segments_ahead={segments_ahead}, use_ffmpeg={use_ffmpeg}")
|
||||||
|
|
||||||
|
async def create_lowres_ffmpeg(self, input_path: str, output_path: str, scale: float, semaphore: asyncio.Semaphore) -> bool:
|
||||||
|
"""
|
||||||
|
Create low-resolution video using FFmpeg (bypasses Python GIL).
|
||||||
|
|
||||||
|
Args:
|
||||||
|
input_path: Path to input video
|
||||||
|
output_path: Path to output low-res video
|
||||||
|
scale: Scale factor for resolution reduction
|
||||||
|
semaphore: Asyncio semaphore for limiting concurrent processes
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
True if successful
|
||||||
|
"""
|
||||||
|
async with semaphore: # Limit concurrent FFmpeg processes
|
||||||
|
try:
|
||||||
|
# Ensure output directory exists
|
||||||
|
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
||||||
|
|
||||||
|
# FFmpeg command for fast low-res video creation
|
||||||
|
cmd = [
|
||||||
|
'ffmpeg', '-y', # Overwrite output
|
||||||
|
'-i', input_path,
|
||||||
|
'-vf', f'scale=iw*{scale}:ih*{scale}',
|
||||||
|
'-c:v', 'libx264',
|
||||||
|
'-preset', 'ultrafast', # Fastest encoding
|
||||||
|
'-crf', '28', # Lower quality OK for inference
|
||||||
|
'-an', # No audio needed for inference
|
||||||
|
output_path
|
||||||
|
]
|
||||||
|
|
||||||
|
logger.debug(f"Starting FFmpeg low-res creation: {os.path.basename(input_path)} -> {os.path.basename(output_path)}")
|
||||||
|
|
||||||
|
# Run FFmpeg asynchronously
|
||||||
|
proc = await asyncio.create_subprocess_exec(
|
||||||
|
*cmd,
|
||||||
|
stdout=asyncio.subprocess.DEVNULL,
|
||||||
|
stderr=asyncio.subprocess.PIPE
|
||||||
|
)
|
||||||
|
|
||||||
|
stdout, stderr = await proc.wait(), await proc.communicate()
|
||||||
|
|
||||||
|
if proc.returncode != 0:
|
||||||
|
stderr_text = stderr[1].decode() if stderr and len(stderr) > 1 else "Unknown error"
|
||||||
|
logger.error(f"FFmpeg failed for {input_path}: {stderr_text}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
# Verify output file was created
|
||||||
|
if not os.path.exists(output_path) or os.path.getsize(output_path) == 0:
|
||||||
|
logger.error(f"FFmpeg output file missing or empty: {output_path}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
logger.debug(f"FFmpeg low-res creation completed: {os.path.basename(output_path)}")
|
||||||
|
return True
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error in FFmpeg low-res creation for {input_path}: {e}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
def create_lowres_opencv(self, input_path: str, output_path: str, scale: float) -> bool:
|
||||||
|
"""
|
||||||
|
Fallback: Create low-resolution video using OpenCV (blocking operation).
|
||||||
|
Used when FFmpeg is not available or fails.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
input_path: Path to input video
|
||||||
|
output_path: Path to output low-res video
|
||||||
|
scale: Scale factor for resolution reduction
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
True if successful
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
import cv2
|
||||||
|
|
||||||
|
logger.debug(f"Creating low-res video with OpenCV: {os.path.basename(input_path)}")
|
||||||
|
|
||||||
|
cap = cv2.VideoCapture(input_path)
|
||||||
|
if not cap.isOpened():
|
||||||
|
logger.error(f"Could not open video with OpenCV: {input_path}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
# Get video properties
|
||||||
|
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH) * scale)
|
||||||
|
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT) * scale)
|
||||||
|
fps = cap.get(cv2.CAP_PROP_FPS) or 30.0
|
||||||
|
|
||||||
|
# Ensure output directory exists
|
||||||
|
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
||||||
|
|
||||||
|
# Create video writer
|
||||||
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
||||||
|
out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height))
|
||||||
|
|
||||||
|
if not out.isOpened():
|
||||||
|
logger.error(f"Could not create video writer for: {output_path}")
|
||||||
|
cap.release()
|
||||||
|
return False
|
||||||
|
|
||||||
|
# Process frames
|
||||||
|
frame_count = 0
|
||||||
|
while True:
|
||||||
|
ret, frame = cap.read()
|
||||||
|
if not ret:
|
||||||
|
break
|
||||||
|
|
||||||
|
# Resize frame
|
||||||
|
low_res_frame = cv2.resize(frame, (frame_width, frame_height),
|
||||||
|
interpolation=cv2.INTER_LINEAR)
|
||||||
|
out.write(low_res_frame)
|
||||||
|
frame_count += 1
|
||||||
|
|
||||||
|
# Cleanup
|
||||||
|
cap.release()
|
||||||
|
out.release()
|
||||||
|
|
||||||
|
logger.debug(f"OpenCV low-res creation completed: {frame_count} frames -> {os.path.basename(output_path)}")
|
||||||
|
return True
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error in OpenCV low-res creation for {input_path}: {e}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
async def create_lowres_video_async(self, input_path: str, output_path: str, scale: float, semaphore: asyncio.Semaphore) -> bool:
|
||||||
|
"""
|
||||||
|
Create low-resolution video using the configured method (FFmpeg or OpenCV).
|
||||||
|
|
||||||
|
Args:
|
||||||
|
input_path: Path to input video
|
||||||
|
output_path: Path to output low-res video
|
||||||
|
scale: Scale factor for resolution reduction
|
||||||
|
semaphore: Asyncio semaphore for limiting concurrent processes
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
True if successful
|
||||||
|
"""
|
||||||
|
# Skip if already exists
|
||||||
|
if os.path.exists(output_path) and os.path.getsize(output_path) > 0:
|
||||||
|
logger.debug(f"Low-res video already exists: {os.path.basename(output_path)}")
|
||||||
|
return True
|
||||||
|
|
||||||
|
if self.use_ffmpeg:
|
||||||
|
# Try FFmpeg first
|
||||||
|
success = await self.create_lowres_ffmpeg(input_path, output_path, scale, semaphore)
|
||||||
|
if success:
|
||||||
|
return True
|
||||||
|
|
||||||
|
logger.warning(f"FFmpeg failed for {input_path}, falling back to OpenCV")
|
||||||
|
|
||||||
|
# Fallback to OpenCV (run in thread pool to avoid blocking)
|
||||||
|
loop = asyncio.get_event_loop()
|
||||||
|
with ThreadPoolExecutor(max_workers=1) as executor:
|
||||||
|
success = await loop.run_in_executor(
|
||||||
|
executor, self.create_lowres_opencv, input_path, output_path, scale
|
||||||
|
)
|
||||||
|
|
||||||
|
return success
|
||||||
|
|
||||||
|
async def prepare_segment_lowres(self, segment_info: Dict[str, Any], scale: float,
|
||||||
|
separate_eye_processing: bool = False, semaphore: asyncio.Semaphore = None) -> bool:
|
||||||
|
"""
|
||||||
|
Prepare low-resolution videos for a segment (regular or eye-specific).
|
||||||
|
|
||||||
|
Args:
|
||||||
|
segment_info: Segment information dictionary
|
||||||
|
scale: Scale factor for resolution reduction
|
||||||
|
separate_eye_processing: Whether to prepare eye-specific videos
|
||||||
|
semaphore: Asyncio semaphore for limiting concurrent processes
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
True if all videos were prepared successfully
|
||||||
|
"""
|
||||||
|
segment_idx = segment_info['index']
|
||||||
|
segment_dir = segment_info['directory']
|
||||||
|
|
||||||
|
try:
|
||||||
|
if separate_eye_processing:
|
||||||
|
# Prepare low-res videos for left and right eyes
|
||||||
|
success_left = success_right = True
|
||||||
|
|
||||||
|
left_eye_path = os.path.join(segment_dir, "left_eye.mp4")
|
||||||
|
right_eye_path = os.path.join(segment_dir, "right_eye.mp4")
|
||||||
|
|
||||||
|
if os.path.exists(left_eye_path):
|
||||||
|
lowres_left_path = os.path.join(segment_dir, "low_res_left_eye_video.mp4")
|
||||||
|
success_left = await self.create_lowres_video_async(left_eye_path, lowres_left_path, scale, semaphore)
|
||||||
|
|
||||||
|
if os.path.exists(right_eye_path):
|
||||||
|
lowres_right_path = os.path.join(segment_dir, "low_res_right_eye_video.mp4")
|
||||||
|
success_right = await self.create_lowres_video_async(right_eye_path, lowres_right_path, scale, semaphore)
|
||||||
|
|
||||||
|
success = success_left and success_right
|
||||||
|
if success:
|
||||||
|
logger.info(f"Pre-generated low-res eye videos for segment {segment_idx}")
|
||||||
|
else:
|
||||||
|
logger.warning(f"Failed to pre-generate some eye videos for segment {segment_idx}")
|
||||||
|
else:
|
||||||
|
# Prepare regular low-res video
|
||||||
|
input_path = segment_info['video_file']
|
||||||
|
lowres_path = os.path.join(segment_dir, "low_res_video.mp4")
|
||||||
|
|
||||||
|
success = await self.create_lowres_video_async(input_path, lowres_path, scale, semaphore)
|
||||||
|
if success:
|
||||||
|
logger.info(f"Pre-generated low-res video for segment {segment_idx}")
|
||||||
|
else:
|
||||||
|
logger.warning(f"Failed to pre-generate low-res video for segment {segment_idx}")
|
||||||
|
|
||||||
|
if success:
|
||||||
|
self.completed_segments.add(segment_idx)
|
||||||
|
|
||||||
|
return success
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error preparing low-res videos for segment {segment_idx}: {e}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
def start_background_preparation(self, segments_info: List[Dict[str, Any]], scale: float,
|
||||||
|
separate_eye_processing: bool = False, current_segment: int = 0):
|
||||||
|
"""
|
||||||
|
Start preparing upcoming segments in background using threads.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
segments_info: List of all segment information
|
||||||
|
scale: Scale factor for resolution reduction
|
||||||
|
separate_eye_processing: Whether to prepare eye-specific videos
|
||||||
|
current_segment: Index of currently processing segment
|
||||||
|
"""
|
||||||
|
def background_worker():
|
||||||
|
"""Background thread worker that prepares upcoming segments."""
|
||||||
|
try:
|
||||||
|
# Prepare segments ahead of current processing
|
||||||
|
start_idx = current_segment + 1
|
||||||
|
end_idx = min(len(segments_info), start_idx + self.segments_ahead)
|
||||||
|
|
||||||
|
segments_to_prepare = []
|
||||||
|
for i in range(start_idx, end_idx):
|
||||||
|
if i not in self.completed_segments and i not in self.preparation_tasks:
|
||||||
|
segments_to_prepare.append((i, segments_info[i]))
|
||||||
|
|
||||||
|
if segments_to_prepare:
|
||||||
|
logger.info(f"Starting background preparation for {len(segments_to_prepare)} segments (indices {start_idx}-{end_idx-1})")
|
||||||
|
|
||||||
|
# Run async work in new event loop
|
||||||
|
loop = asyncio.new_event_loop()
|
||||||
|
asyncio.set_event_loop(loop)
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Create semaphore in this event loop
|
||||||
|
semaphore = asyncio.Semaphore(self.max_concurrent)
|
||||||
|
|
||||||
|
tasks = []
|
||||||
|
for segment_idx, segment_info in segments_to_prepare:
|
||||||
|
task = self.prepare_segment_lowres(segment_info, scale, separate_eye_processing, semaphore)
|
||||||
|
tasks.append(task)
|
||||||
|
|
||||||
|
# Run all preparation tasks
|
||||||
|
results = loop.run_until_complete(asyncio.gather(*tasks, return_exceptions=True))
|
||||||
|
|
||||||
|
# Mark completed segments
|
||||||
|
for i, (segment_idx, _) in enumerate(segments_to_prepare):
|
||||||
|
if i < len(results) and results[i] is True:
|
||||||
|
self.completed_segments.add(segment_idx)
|
||||||
|
logger.debug(f"Background preparation completed for segment {segment_idx}")
|
||||||
|
|
||||||
|
finally:
|
||||||
|
loop.close()
|
||||||
|
else:
|
||||||
|
logger.debug(f"No segments need preparation (current: {current_segment})")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error in background preparation worker: {e}")
|
||||||
|
|
||||||
|
# Start background thread
|
||||||
|
thread = threading.Thread(target=background_worker, daemon=True)
|
||||||
|
thread.start()
|
||||||
|
self.active_threads.append(thread)
|
||||||
|
|
||||||
|
def is_segment_ready(self, segment_idx: int) -> bool:
|
||||||
|
"""
|
||||||
|
Check if low-res videos for a segment are ready.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
segment_idx: Index of segment to check
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
True if segment is ready
|
||||||
|
"""
|
||||||
|
return segment_idx in self.completed_segments
|
||||||
|
|
||||||
|
def cleanup(self):
|
||||||
|
"""Clean up any running threads."""
|
||||||
|
# Note: daemon threads will be cleaned up automatically when main process exits
|
||||||
|
# We just clear our tracking structures
|
||||||
|
self.active_threads.clear()
|
||||||
|
self.preparation_tasks.clear()
|
||||||
|
|
||||||
|
logger.debug("AsyncLowResPreprocessor cleanup completed")
|
||||||
@@ -185,3 +185,11 @@ class ConfigLoader:
|
|||||||
def should_cleanup_intermediate_files(self) -> bool:
|
def should_cleanup_intermediate_files(self) -> bool:
|
||||||
"""Get whether to cleanup intermediate files."""
|
"""Get whether to cleanup intermediate files."""
|
||||||
return self.config.get('advanced', {}).get('cleanup_intermediate_files', True)
|
return self.config.get('advanced', {}).get('cleanup_intermediate_files', True)
|
||||||
|
|
||||||
|
def get_stereo_iou_threshold(self) -> float:
|
||||||
|
"""Get the IOU threshold for stereo mask agreement."""
|
||||||
|
return self.config['processing'].get('stereo_iou_threshold', 0.5)
|
||||||
|
|
||||||
|
def get_confidence_reduction_factor(self) -> float:
|
||||||
|
"""Get the factor to reduce YOLO confidence by on retry."""
|
||||||
|
return self.config['processing'].get('confidence_reduction_factor', 0.8)
|
||||||
266
core/eye_processor.py
Normal file
266
core/eye_processor.py
Normal file
@@ -0,0 +1,266 @@
|
|||||||
|
"""
|
||||||
|
Eye processor module for VR180 separate eye processing.
|
||||||
|
Handles splitting VR180 side-by-side frames into separate left/right eyes and recombining.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
import logging
|
||||||
|
import subprocess
|
||||||
|
from typing import Dict, List, Any, Optional, Tuple
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
class EyeProcessor:
|
||||||
|
"""Handles VR180 eye-specific processing operations."""
|
||||||
|
|
||||||
|
def __init__(self, eye_overlap_pixels: int = 0):
|
||||||
|
"""
|
||||||
|
Initialize eye processor.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
eye_overlap_pixels: Number of pixels to overlap between eyes for blending
|
||||||
|
"""
|
||||||
|
self.eye_overlap_pixels = eye_overlap_pixels
|
||||||
|
|
||||||
|
def split_frame_into_eyes(self, frame: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
||||||
|
"""
|
||||||
|
Split a VR180 side-by-side frame into separate left and right eye frames.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
frame: Input VR180 frame (BGR format)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tuple of (left_eye_frame, right_eye_frame)
|
||||||
|
"""
|
||||||
|
if len(frame.shape) != 3:
|
||||||
|
raise ValueError("Frame must be a 3-channel BGR image")
|
||||||
|
|
||||||
|
height, width, channels = frame.shape
|
||||||
|
half_width = width // 2
|
||||||
|
|
||||||
|
# Extract left and right eye frames
|
||||||
|
left_eye = frame[:, :half_width + self.eye_overlap_pixels, :]
|
||||||
|
right_eye = frame[:, half_width - self.eye_overlap_pixels:, :]
|
||||||
|
|
||||||
|
logger.debug(f"Split frame {width}x{height} into left: {left_eye.shape} and right: {right_eye.shape}")
|
||||||
|
|
||||||
|
return left_eye, right_eye
|
||||||
|
|
||||||
|
def split_video_into_eyes(self, input_video_path: str, left_output_path: str,
|
||||||
|
right_output_path: str, scale: float = 1.0) -> bool:
|
||||||
|
"""
|
||||||
|
Split a VR180 video into separate left and right eye videos using FFmpeg.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
input_video_path: Path to input VR180 video
|
||||||
|
left_output_path: Output path for left eye video
|
||||||
|
right_output_path: Output path for right eye video
|
||||||
|
scale: Scale factor for output videos (default: 1.0)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
True if successful, False otherwise
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
# Get video properties
|
||||||
|
cap = cv2.VideoCapture(input_video_path)
|
||||||
|
if not cap.isOpened():
|
||||||
|
logger.error(f"Could not open video: {input_video_path}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||||
|
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||||
|
fps = cap.get(cv2.CAP_PROP_FPS)
|
||||||
|
cap.release()
|
||||||
|
|
||||||
|
# Calculate output dimensions
|
||||||
|
half_width = int((width // 2) * scale)
|
||||||
|
output_height = int(height * scale)
|
||||||
|
|
||||||
|
# Create output directories if they don't exist
|
||||||
|
os.makedirs(os.path.dirname(left_output_path), exist_ok=True)
|
||||||
|
os.makedirs(os.path.dirname(right_output_path), exist_ok=True)
|
||||||
|
|
||||||
|
# FFmpeg command for left eye (crop left half)
|
||||||
|
left_command = [
|
||||||
|
'ffmpeg', '-y',
|
||||||
|
'-i', input_video_path,
|
||||||
|
'-vf', f'crop={width//2 + self.eye_overlap_pixels}:{height}:0:0,scale={half_width}:{output_height}',
|
||||||
|
'-c:v', 'libx264',
|
||||||
|
'-preset', 'fast',
|
||||||
|
'-crf', '18',
|
||||||
|
left_output_path
|
||||||
|
]
|
||||||
|
|
||||||
|
# FFmpeg command for right eye (crop right half)
|
||||||
|
right_command = [
|
||||||
|
'ffmpeg', '-y',
|
||||||
|
'-i', input_video_path,
|
||||||
|
'-vf', f'crop={width//2 + self.eye_overlap_pixels}:{height}:{width//2 - self.eye_overlap_pixels}:0,scale={half_width}:{output_height}',
|
||||||
|
'-c:v', 'libx264',
|
||||||
|
'-preset', 'fast',
|
||||||
|
'-crf', '18',
|
||||||
|
right_output_path
|
||||||
|
]
|
||||||
|
|
||||||
|
logger.info(f"Splitting video into left eye: {left_output_path}")
|
||||||
|
result_left = subprocess.run(left_command, capture_output=True, text=True)
|
||||||
|
if result_left.returncode != 0:
|
||||||
|
logger.error(f"FFmpeg failed for left eye: {result_left.stderr}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
logger.info(f"Splitting video into right eye: {right_output_path}")
|
||||||
|
result_right = subprocess.run(right_command, capture_output=True, text=True)
|
||||||
|
if result_right.returncode != 0:
|
||||||
|
logger.error(f"FFmpeg failed for right eye: {result_right.stderr}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
logger.info(f"Successfully split video into separate eye videos")
|
||||||
|
return True
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error splitting video into eyes: {e}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
def combine_eye_masks(self, left_masks: Optional[Dict[int, np.ndarray]],
|
||||||
|
right_masks: Optional[Dict[int, np.ndarray]],
|
||||||
|
full_frame_shape: Tuple[int, int]) -> Dict[int, np.ndarray]:
|
||||||
|
"""
|
||||||
|
Combine left and right eye masks back into full-frame format.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
left_masks: Dictionary of masks from left eye processing (frame_idx -> mask)
|
||||||
|
right_masks: Dictionary of masks from right eye processing (frame_idx -> mask)
|
||||||
|
full_frame_shape: Shape of the full VR180 frame (height, width)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Dictionary of combined masks in full-frame format
|
||||||
|
"""
|
||||||
|
combined_masks = {}
|
||||||
|
full_height, full_width = full_frame_shape
|
||||||
|
half_width = full_width // 2
|
||||||
|
|
||||||
|
# Get all frame indices from both eyes
|
||||||
|
left_frames = set(left_masks.keys()) if left_masks else set()
|
||||||
|
right_frames = set(right_masks.keys()) if right_masks else set()
|
||||||
|
all_frames = left_frames.union(right_frames)
|
||||||
|
|
||||||
|
for frame_idx in all_frames:
|
||||||
|
# Create full-frame mask
|
||||||
|
combined_mask = np.zeros((full_height, full_width), dtype=np.uint8)
|
||||||
|
|
||||||
|
# Add left eye mask to left half of frame
|
||||||
|
if left_masks and frame_idx in left_masks:
|
||||||
|
left_mask = left_masks[frame_idx]
|
||||||
|
if len(left_mask.shape) == 3:
|
||||||
|
left_mask = left_mask.squeeze()
|
||||||
|
|
||||||
|
# Resize left mask to fit left half of full frame
|
||||||
|
left_target_width = half_width + self.eye_overlap_pixels
|
||||||
|
if left_mask.shape != (full_height, left_target_width):
|
||||||
|
left_mask = cv2.resize(left_mask.astype(np.uint8),
|
||||||
|
(left_target_width, full_height),
|
||||||
|
interpolation=cv2.INTER_NEAREST)
|
||||||
|
|
||||||
|
# Place in left half of combined mask
|
||||||
|
combined_mask[:, :left_target_width] = left_mask[:, :left_target_width]
|
||||||
|
|
||||||
|
# Add right eye mask to right half of frame
|
||||||
|
if right_masks and frame_idx in right_masks:
|
||||||
|
right_mask = right_masks[frame_idx]
|
||||||
|
if len(right_mask.shape) == 3:
|
||||||
|
right_mask = right_mask.squeeze()
|
||||||
|
|
||||||
|
# Resize right mask to fit right half of full frame
|
||||||
|
right_target_width = half_width + self.eye_overlap_pixels
|
||||||
|
right_start_x = half_width - self.eye_overlap_pixels
|
||||||
|
|
||||||
|
if right_mask.shape != (full_height, right_target_width):
|
||||||
|
right_mask = cv2.resize(right_mask.astype(np.uint8),
|
||||||
|
(right_target_width, full_height),
|
||||||
|
interpolation=cv2.INTER_NEAREST)
|
||||||
|
|
||||||
|
# Place in right half of combined mask
|
||||||
|
combined_mask[:, right_start_x:] = right_mask
|
||||||
|
|
||||||
|
# Store combined mask for this frame (using object ID 1 for simplicity)
|
||||||
|
combined_masks[frame_idx] = {1: combined_mask}
|
||||||
|
|
||||||
|
logger.debug(f"Combined {len(combined_masks)} frame masks from left/right eyes")
|
||||||
|
return combined_masks
|
||||||
|
|
||||||
|
def is_in_left_half(self, detection: Dict[str, Any], frame_width: int) -> bool:
|
||||||
|
"""
|
||||||
|
Check if a detection is in the left half of a VR180 frame.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
detection: YOLO detection dictionary with 'bbox' key
|
||||||
|
frame_width: Width of the full VR180 frame
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
True if detection center is in left half
|
||||||
|
"""
|
||||||
|
bbox = detection['bbox']
|
||||||
|
center_x = (bbox[0] + bbox[2]) / 2
|
||||||
|
return center_x < (frame_width // 2)
|
||||||
|
|
||||||
|
def is_in_right_half(self, detection: Dict[str, Any], frame_width: int) -> bool:
|
||||||
|
"""
|
||||||
|
Check if a detection is in the right half of a VR180 frame.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
detection: YOLO detection dictionary with 'bbox' key
|
||||||
|
frame_width: Width of the full VR180 frame
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
True if detection center is in right half
|
||||||
|
"""
|
||||||
|
return not self.is_in_left_half(detection, frame_width)
|
||||||
|
|
||||||
|
def convert_detection_to_eye_coordinates(self, detection: Dict[str, Any],
|
||||||
|
eye_side: str, frame_width: int) -> Dict[str, Any]:
|
||||||
|
"""
|
||||||
|
Convert a full-frame detection to eye-specific coordinates.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
detection: YOLO detection dictionary with 'bbox' key
|
||||||
|
eye_side: 'left' or 'right'
|
||||||
|
frame_width: Width of the full VR180 frame
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Detection with converted coordinates for the specific eye
|
||||||
|
"""
|
||||||
|
bbox = detection['bbox'].copy()
|
||||||
|
half_width = frame_width // 2
|
||||||
|
|
||||||
|
if eye_side == 'right':
|
||||||
|
# Shift right eye coordinates to start from 0
|
||||||
|
bbox[0] -= (half_width - self.eye_overlap_pixels) # x1
|
||||||
|
bbox[2] -= (half_width - self.eye_overlap_pixels) # x2
|
||||||
|
|
||||||
|
# Ensure coordinates are within bounds
|
||||||
|
eye_width = half_width + self.eye_overlap_pixels
|
||||||
|
bbox[0] = max(0, min(bbox[0], eye_width - 1))
|
||||||
|
bbox[2] = max(0, min(bbox[2], eye_width - 1))
|
||||||
|
|
||||||
|
converted_detection = detection.copy()
|
||||||
|
converted_detection['bbox'] = bbox
|
||||||
|
|
||||||
|
return converted_detection
|
||||||
|
|
||||||
|
def create_full_greenscreen_frame(self, frame_shape: Tuple[int, int, int],
|
||||||
|
green_color: List[int] = [0, 255, 0]) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Create a full greenscreen frame for fallback when no humans are detected.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
frame_shape: Shape of the frame (height, width, channels)
|
||||||
|
green_color: RGB values for green screen color
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Full greenscreen frame
|
||||||
|
"""
|
||||||
|
greenscreen_frame = np.full(frame_shape, green_color, dtype=np.uint8)
|
||||||
|
logger.debug(f"Created full greenscreen frame with shape {frame_shape}")
|
||||||
|
return greenscreen_frame
|
||||||
914
core/mask_processor.py
Normal file
914
core/mask_processor.py
Normal file
@@ -0,0 +1,914 @@
|
|||||||
|
"""
|
||||||
|
Mask processor module for applying green screen effects.
|
||||||
|
Handles applying masks to video frames to create green screen output.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
import cupy as cp
|
||||||
|
import subprocess
|
||||||
|
import sys
|
||||||
|
import logging
|
||||||
|
from typing import Dict, List, Any, Optional, Tuple
|
||||||
|
from collections import deque
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
class MaskProcessor:
|
||||||
|
"""Handles mask application and green screen processing with quality enhancements."""
|
||||||
|
|
||||||
|
def __init__(self, green_color: List[int] = [0, 255, 0], blue_color: List[int] = [255, 0, 0],
|
||||||
|
mask_quality_config: Optional[Dict[str, Any]] = None,
|
||||||
|
output_mode: str = "green_screen"):
|
||||||
|
"""
|
||||||
|
Initialize mask processor with quality enhancement options.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
green_color: RGB color for green screen background
|
||||||
|
blue_color: RGB color for second object (if needed)
|
||||||
|
mask_quality_config: Configuration dictionary for mask quality improvements
|
||||||
|
output_mode: Output mode - "green_screen" or "alpha_channel"
|
||||||
|
"""
|
||||||
|
self.green_color = green_color
|
||||||
|
self.blue_color = blue_color
|
||||||
|
self.output_mode = output_mode
|
||||||
|
self.use_gpu = self._check_gpu_availability()
|
||||||
|
|
||||||
|
# Mask quality configuration with defaults
|
||||||
|
if mask_quality_config is None:
|
||||||
|
mask_quality_config = {}
|
||||||
|
|
||||||
|
self.enable_edge_blur = mask_quality_config.get('enable_edge_blur', False)
|
||||||
|
self.edge_blur_radius = mask_quality_config.get('edge_blur_radius', 3)
|
||||||
|
self.edge_blur_sigma = mask_quality_config.get('edge_blur_sigma', 1.5)
|
||||||
|
|
||||||
|
self.enable_temporal_smoothing = mask_quality_config.get('enable_temporal_smoothing', False)
|
||||||
|
self.temporal_blend_weight = mask_quality_config.get('temporal_blend_weight', 0.3)
|
||||||
|
self.temporal_history_frames = mask_quality_config.get('temporal_history_frames', 3)
|
||||||
|
|
||||||
|
self.enable_morphological_cleaning = mask_quality_config.get('enable_morphological_cleaning', False)
|
||||||
|
self.morphology_kernel_size = mask_quality_config.get('morphology_kernel_size', 5)
|
||||||
|
self.min_component_size = mask_quality_config.get('min_component_size', 500)
|
||||||
|
|
||||||
|
self.alpha_blending_mode = mask_quality_config.get('alpha_blending_mode', 'gaussian')
|
||||||
|
self.alpha_transition_width = mask_quality_config.get('alpha_transition_width', 10)
|
||||||
|
|
||||||
|
self.enable_bilateral_filter = mask_quality_config.get('enable_bilateral_filter', False)
|
||||||
|
self.bilateral_d = mask_quality_config.get('bilateral_d', 9)
|
||||||
|
self.bilateral_sigma_color = mask_quality_config.get('bilateral_sigma_color', 75)
|
||||||
|
self.bilateral_sigma_space = mask_quality_config.get('bilateral_sigma_space', 75)
|
||||||
|
|
||||||
|
# Temporal history buffer for mask smoothing
|
||||||
|
self.mask_history = deque(maxlen=self.temporal_history_frames)
|
||||||
|
|
||||||
|
# Log configuration
|
||||||
|
if any([self.enable_edge_blur, self.enable_temporal_smoothing, self.enable_morphological_cleaning]):
|
||||||
|
logger.info("Mask quality enhancements enabled:")
|
||||||
|
if self.enable_edge_blur:
|
||||||
|
logger.info(f" Edge blur: radius={self.edge_blur_radius}, sigma={self.edge_blur_sigma}")
|
||||||
|
if self.enable_temporal_smoothing:
|
||||||
|
logger.info(f" Temporal smoothing: weight={self.temporal_blend_weight}, history={self.temporal_history_frames}")
|
||||||
|
if self.enable_morphological_cleaning:
|
||||||
|
logger.info(f" Morphological cleaning: kernel={self.morphology_kernel_size}, min_size={self.min_component_size}")
|
||||||
|
logger.info(f" Alpha blending: mode={self.alpha_blending_mode}, width={self.alpha_transition_width}")
|
||||||
|
else:
|
||||||
|
logger.info("Mask quality enhancements disabled - using standard binary masking")
|
||||||
|
|
||||||
|
logger.info(f"Output mode: {self.output_mode}")
|
||||||
|
|
||||||
|
def _check_gpu_availability(self) -> bool:
|
||||||
|
"""Check if CuPy GPU acceleration is available."""
|
||||||
|
try:
|
||||||
|
import cupy as cp
|
||||||
|
# Test GPU availability
|
||||||
|
test_array = cp.array([1, 2, 3])
|
||||||
|
_ = test_array * 2
|
||||||
|
logger.info("GPU acceleration available via CuPy")
|
||||||
|
return True
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"GPU acceleration not available, using CPU: {e}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
def enhance_mask_quality(self, mask: np.ndarray) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Apply all enabled mask quality enhancements.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
mask: Input binary mask
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Enhanced mask with quality improvements applied
|
||||||
|
"""
|
||||||
|
enhanced_mask = mask.copy()
|
||||||
|
|
||||||
|
# 1. Morphological cleaning
|
||||||
|
if self.enable_morphological_cleaning:
|
||||||
|
enhanced_mask = self._clean_mask_morphologically(enhanced_mask)
|
||||||
|
|
||||||
|
# 2. Temporal smoothing
|
||||||
|
if self.enable_temporal_smoothing:
|
||||||
|
enhanced_mask = self._apply_temporal_smoothing(enhanced_mask)
|
||||||
|
|
||||||
|
# 3. Edge enhancement and blurring
|
||||||
|
if self.enable_edge_blur:
|
||||||
|
enhanced_mask = self._apply_edge_blur(enhanced_mask)
|
||||||
|
|
||||||
|
# 4. Bilateral filtering (if enabled)
|
||||||
|
if self.enable_bilateral_filter:
|
||||||
|
enhanced_mask = self._apply_bilateral_filter(enhanced_mask)
|
||||||
|
|
||||||
|
return enhanced_mask
|
||||||
|
|
||||||
|
def _clean_mask_morphologically(self, mask: np.ndarray) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Clean mask using morphological operations to remove noise and small artifacts.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
mask: Input binary mask
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Cleaned mask
|
||||||
|
"""
|
||||||
|
# Convert to uint8 for OpenCV operations
|
||||||
|
mask_uint8 = (mask * 255).astype(np.uint8)
|
||||||
|
|
||||||
|
# Create morphological kernel
|
||||||
|
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,
|
||||||
|
(self.morphology_kernel_size, self.morphology_kernel_size))
|
||||||
|
|
||||||
|
# Opening operation (erosion followed by dilation) to remove small noise
|
||||||
|
cleaned = cv2.morphologyEx(mask_uint8, cv2.MORPH_OPEN, kernel)
|
||||||
|
|
||||||
|
# Closing operation (dilation followed by erosion) to fill small holes
|
||||||
|
cleaned = cv2.morphologyEx(cleaned, cv2.MORPH_CLOSE, kernel)
|
||||||
|
|
||||||
|
# Remove small connected components
|
||||||
|
if self.min_component_size > 0:
|
||||||
|
cleaned = self._remove_small_components(cleaned)
|
||||||
|
|
||||||
|
return (cleaned / 255.0).astype(np.float32)
|
||||||
|
|
||||||
|
def _remove_small_components(self, mask: np.ndarray) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Remove connected components smaller than minimum size.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
mask: Input binary mask (uint8)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Mask with small components removed
|
||||||
|
"""
|
||||||
|
# Find connected components
|
||||||
|
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(mask, connectivity=8)
|
||||||
|
|
||||||
|
# Create output mask
|
||||||
|
output_mask = np.zeros_like(mask)
|
||||||
|
|
||||||
|
# Keep components larger than minimum size (skip background label 0)
|
||||||
|
for i in range(1, num_labels):
|
||||||
|
component_size = stats[i, cv2.CC_STAT_AREA]
|
||||||
|
if component_size >= self.min_component_size:
|
||||||
|
output_mask[labels == i] = 255
|
||||||
|
|
||||||
|
return output_mask
|
||||||
|
|
||||||
|
def _apply_temporal_smoothing(self, mask: np.ndarray) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Apply temporal smoothing using mask history.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
mask: Current frame mask
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Temporally smoothed mask
|
||||||
|
"""
|
||||||
|
if len(self.mask_history) == 0:
|
||||||
|
# First frame, no history to blend with
|
||||||
|
self.mask_history.append(mask.copy())
|
||||||
|
return mask
|
||||||
|
|
||||||
|
# Blend with previous frames using weighted average
|
||||||
|
smoothed_mask = mask.astype(np.float32)
|
||||||
|
total_weight = 1.0
|
||||||
|
|
||||||
|
for i, hist_mask in enumerate(reversed(self.mask_history)):
|
||||||
|
# Exponential decay: more recent frames have higher weight
|
||||||
|
frame_weight = self.temporal_blend_weight * (0.8 ** i)
|
||||||
|
smoothed_mask += hist_mask.astype(np.float32) * frame_weight
|
||||||
|
total_weight += frame_weight
|
||||||
|
|
||||||
|
# Normalize by total weight
|
||||||
|
smoothed_mask /= total_weight
|
||||||
|
|
||||||
|
# Update history
|
||||||
|
self.mask_history.append(mask.copy())
|
||||||
|
|
||||||
|
return smoothed_mask
|
||||||
|
|
||||||
|
def _apply_edge_blur(self, mask: np.ndarray) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Apply Gaussian blur to mask edges for smooth transitions.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
mask: Input mask
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Mask with blurred edges
|
||||||
|
"""
|
||||||
|
# Apply Gaussian blur
|
||||||
|
kernel_size = 2 * self.edge_blur_radius + 1
|
||||||
|
blurred_mask = cv2.GaussianBlur(mask.astype(np.float32),
|
||||||
|
(kernel_size, kernel_size),
|
||||||
|
self.edge_blur_sigma)
|
||||||
|
|
||||||
|
return blurred_mask
|
||||||
|
|
||||||
|
def _apply_bilateral_filter(self, mask: np.ndarray) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Apply bilateral filtering for edge-preserving smoothing.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
mask: Input mask
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Filtered mask
|
||||||
|
"""
|
||||||
|
# Convert to uint8 for bilateral filter
|
||||||
|
mask_uint8 = (mask * 255).astype(np.uint8)
|
||||||
|
|
||||||
|
# Apply bilateral filter
|
||||||
|
filtered = cv2.bilateralFilter(mask_uint8, self.bilateral_d,
|
||||||
|
self.bilateral_sigma_color,
|
||||||
|
self.bilateral_sigma_space)
|
||||||
|
|
||||||
|
return (filtered / 255.0).astype(np.float32)
|
||||||
|
|
||||||
|
def _create_alpha_mask(self, mask: np.ndarray) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Create alpha mask with smooth transitions based on blending mode.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
mask: Input binary/float mask
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Alpha mask with smooth transitions
|
||||||
|
"""
|
||||||
|
if self.alpha_blending_mode == "linear":
|
||||||
|
return mask
|
||||||
|
elif self.alpha_blending_mode == "gaussian":
|
||||||
|
# Use distance transform for smooth falloff
|
||||||
|
binary_mask = (mask > 0.5).astype(np.uint8)
|
||||||
|
|
||||||
|
# Distance transform from mask edges
|
||||||
|
dist_inside = cv2.distanceTransform(binary_mask, cv2.DIST_L2, 5)
|
||||||
|
dist_outside = cv2.distanceTransform(1 - binary_mask, cv2.DIST_L2, 5)
|
||||||
|
|
||||||
|
# Create smooth alpha based on distance
|
||||||
|
alpha = np.zeros_like(mask, dtype=np.float32)
|
||||||
|
transition_width = self.alpha_transition_width
|
||||||
|
|
||||||
|
# Inside mask: fade from edge
|
||||||
|
alpha[binary_mask > 0] = np.minimum(1.0, dist_inside[binary_mask > 0] / transition_width)
|
||||||
|
|
||||||
|
# Outside mask: fade to zero
|
||||||
|
alpha[binary_mask == 0] = np.maximum(0.0, 1.0 - dist_outside[binary_mask == 0] / transition_width)
|
||||||
|
|
||||||
|
return alpha
|
||||||
|
elif self.alpha_blending_mode == "sigmoid":
|
||||||
|
# Sigmoid-based smooth transition
|
||||||
|
return 1.0 / (1.0 + np.exp(-10 * (mask - 0.5)))
|
||||||
|
else:
|
||||||
|
return mask
|
||||||
|
|
||||||
|
def apply_green_mask(self, frame: np.ndarray, masks: List[np.ndarray]) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Apply green screen mask to a frame with quality enhancements.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
frame: Input video frame (BGR format)
|
||||||
|
masks: List of object masks to apply
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Frame with green screen background and enhanced mask quality
|
||||||
|
"""
|
||||||
|
# Combine all masks into a single mask
|
||||||
|
combined_mask = self._combine_masks(masks)
|
||||||
|
|
||||||
|
# Apply quality enhancements
|
||||||
|
enhanced_mask = self.enhance_mask_quality(combined_mask)
|
||||||
|
|
||||||
|
# Create alpha mask for smooth blending
|
||||||
|
alpha_mask = self._create_alpha_mask(enhanced_mask)
|
||||||
|
|
||||||
|
# Apply mask using alpha blending
|
||||||
|
if self.use_gpu:
|
||||||
|
return self._apply_green_mask_gpu_enhanced(frame, alpha_mask)
|
||||||
|
else:
|
||||||
|
return self._apply_green_mask_cpu_enhanced(frame, alpha_mask)
|
||||||
|
|
||||||
|
def apply_mask_with_alpha(self, frame: np.ndarray, masks: List[np.ndarray]) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Apply mask to create RGBA frame with alpha channel.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
frame: Input video frame (BGR format)
|
||||||
|
masks: List of object masks to apply
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
RGBA frame with alpha channel
|
||||||
|
"""
|
||||||
|
# Combine all masks into a single mask
|
||||||
|
combined_mask = self._combine_masks(masks)
|
||||||
|
|
||||||
|
# Apply quality enhancements
|
||||||
|
enhanced_mask = self.enhance_mask_quality(combined_mask)
|
||||||
|
|
||||||
|
# Create alpha mask for smooth blending
|
||||||
|
alpha_mask = self._create_alpha_mask(enhanced_mask)
|
||||||
|
|
||||||
|
# Resize alpha mask to match frame if needed
|
||||||
|
if alpha_mask.shape != frame.shape[:2]:
|
||||||
|
alpha_mask = cv2.resize(alpha_mask, (frame.shape[1], frame.shape[0]))
|
||||||
|
|
||||||
|
# Convert BGR to BGRA
|
||||||
|
bgra_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2BGRA)
|
||||||
|
|
||||||
|
# Set alpha channel
|
||||||
|
bgra_frame[:, :, 3] = (alpha_mask * 255).astype(np.uint8)
|
||||||
|
|
||||||
|
return bgra_frame
|
||||||
|
|
||||||
|
def _combine_masks(self, masks: List[np.ndarray]) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Combine multiple object masks into a single mask.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
masks: List of object masks
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Combined mask
|
||||||
|
"""
|
||||||
|
if not masks:
|
||||||
|
return np.zeros((0, 0), dtype=np.float32)
|
||||||
|
|
||||||
|
# Start with first mask
|
||||||
|
combined_mask = masks[0].squeeze().astype(np.float32)
|
||||||
|
|
||||||
|
# Combine with remaining masks using logical OR
|
||||||
|
for mask in masks[1:]:
|
||||||
|
mask_squeezed = mask.squeeze().astype(np.float32)
|
||||||
|
if mask_squeezed.shape != combined_mask.shape:
|
||||||
|
# Resize mask to match combined mask
|
||||||
|
mask_squeezed = cv2.resize(mask_squeezed,
|
||||||
|
(combined_mask.shape[1], combined_mask.shape[0]),
|
||||||
|
interpolation=cv2.INTER_NEAREST)
|
||||||
|
combined_mask = np.maximum(combined_mask, mask_squeezed)
|
||||||
|
|
||||||
|
return combined_mask
|
||||||
|
|
||||||
|
def reset_temporal_history(self):
|
||||||
|
"""Reset temporal history buffer. Call this when starting a new segment."""
|
||||||
|
self.mask_history.clear()
|
||||||
|
logger.debug("Temporal history buffer reset")
|
||||||
|
|
||||||
|
def _apply_green_mask_gpu_enhanced(self, frame: np.ndarray, alpha_mask: np.ndarray) -> np.ndarray:
|
||||||
|
"""GPU-accelerated green mask application with alpha blending using CuPy (Phase 1 optimized)."""
|
||||||
|
try:
|
||||||
|
# Convert to CuPy arrays with optimized data transfer
|
||||||
|
frame_gpu = cp.asarray(frame, dtype=cp.uint8)
|
||||||
|
alpha_gpu = cp.asarray(alpha_mask, dtype=cp.float32)
|
||||||
|
|
||||||
|
# Resize alpha mask to match frame if needed (vectorized operation)
|
||||||
|
if alpha_gpu.shape != frame_gpu.shape[:2]:
|
||||||
|
# Use CuPy's resize instead of OpenCV for GPU optimization
|
||||||
|
alpha_gpu = cp.array(cv2.resize(cp.asnumpy(alpha_gpu),
|
||||||
|
(frame_gpu.shape[1], frame_gpu.shape[0])))
|
||||||
|
|
||||||
|
# Create green background (optimized broadcasting)
|
||||||
|
green_color_gpu = cp.array(self.green_color, dtype=cp.uint8)
|
||||||
|
green_background = cp.broadcast_to(green_color_gpu, frame_gpu.shape)
|
||||||
|
|
||||||
|
# Apply vectorized alpha blending with optimized memory access
|
||||||
|
alpha_3d = cp.expand_dims(alpha_gpu, axis=2)
|
||||||
|
|
||||||
|
# Use more efficient computation with explicit typing
|
||||||
|
frame_float = frame_gpu.astype(cp.float32)
|
||||||
|
green_float = green_background.astype(cp.float32)
|
||||||
|
|
||||||
|
# Vectorized blending operation
|
||||||
|
result_frame = cp.clip(alpha_3d * frame_float + (1.0 - alpha_3d) * green_float, 0, 255)
|
||||||
|
|
||||||
|
return cp.asnumpy(result_frame.astype(cp.uint8))
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"GPU enhanced processing failed, falling back to CPU: {e}")
|
||||||
|
return self._apply_green_mask_cpu_enhanced(frame, alpha_mask)
|
||||||
|
|
||||||
|
def _apply_green_mask_cpu_enhanced(self, frame: np.ndarray, alpha_mask: np.ndarray) -> np.ndarray:
|
||||||
|
"""CPU-based green mask application with alpha blending (Phase 1 optimized)."""
|
||||||
|
# Resize alpha mask to match frame if needed
|
||||||
|
if alpha_mask.shape != frame.shape[:2]:
|
||||||
|
alpha_mask = cv2.resize(alpha_mask, (frame.shape[1], frame.shape[0]))
|
||||||
|
|
||||||
|
# Create green background with broadcasting (more efficient)
|
||||||
|
green_color = np.array(self.green_color, dtype=np.uint8)
|
||||||
|
green_background = np.broadcast_to(green_color, frame.shape)
|
||||||
|
|
||||||
|
# Apply optimized alpha blending with explicit data types
|
||||||
|
alpha_3d = np.expand_dims(alpha_mask.astype(np.float32), axis=2)
|
||||||
|
|
||||||
|
# Vectorized blending with optimized memory access
|
||||||
|
frame_float = frame.astype(np.float32)
|
||||||
|
green_float = green_background.astype(np.float32)
|
||||||
|
|
||||||
|
result_frame = np.clip(alpha_3d * frame_float + (1.0 - alpha_3d) * green_float, 0, 255)
|
||||||
|
|
||||||
|
return result_frame.astype(np.uint8)
|
||||||
|
|
||||||
|
def apply_colored_mask(self, frame: np.ndarray, masks_a: List[np.ndarray],
|
||||||
|
masks_b: List[np.ndarray]) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Apply colored masks for visualization (green and blue).
|
||||||
|
|
||||||
|
Args:
|
||||||
|
frame: Input video frame
|
||||||
|
masks_a: Masks for object A (green)
|
||||||
|
masks_b: Masks for object B (blue)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Frame with colored masks applied
|
||||||
|
"""
|
||||||
|
colored_mask = np.zeros_like(frame)
|
||||||
|
|
||||||
|
# Apply green color to masks_a
|
||||||
|
for mask in masks_a:
|
||||||
|
mask = mask.squeeze()
|
||||||
|
if mask.shape != frame.shape[:2]:
|
||||||
|
mask = cv2.resize(mask, (frame.shape[1], frame.shape[0]),
|
||||||
|
interpolation=cv2.INTER_NEAREST)
|
||||||
|
colored_mask[mask > 0] = self.green_color
|
||||||
|
|
||||||
|
# Apply blue color to masks_b
|
||||||
|
for mask in masks_b:
|
||||||
|
mask = mask.squeeze()
|
||||||
|
if mask.shape != frame.shape[:2]:
|
||||||
|
mask = cv2.resize(mask, (frame.shape[1], frame.shape[0]),
|
||||||
|
interpolation=cv2.INTER_NEAREST)
|
||||||
|
colored_mask[mask > 0] = self.blue_color
|
||||||
|
|
||||||
|
return colored_mask
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def process_and_save_output_video(self, video_path: str, output_video_path: str,
|
||||||
|
video_segments: Dict[int, Dict[int, np.ndarray]],
|
||||||
|
use_nvenc: bool = False, bitrate: str = "50M",
|
||||||
|
batch_size: int = 16) -> bool:
|
||||||
|
"""
|
||||||
|
Process high-resolution frames, apply upscaled masks, and save the output video.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
video_path: Path to input video
|
||||||
|
output_video_path: Path to save output video
|
||||||
|
video_segments: Dictionary of frame masks
|
||||||
|
use_nvenc: Whether to use NVIDIA hardware encoding
|
||||||
|
bitrate: Output video bitrate
|
||||||
|
batch_size: Number of frames to process in a single batch
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
True if successful
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
cap = cv2.VideoCapture(video_path)
|
||||||
|
if not cap.isOpened():
|
||||||
|
logger.error(f"Could not open video: {video_path}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||||
|
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||||
|
fps = cap.get(cv2.CAP_PROP_FPS) or 30.0
|
||||||
|
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
||||||
|
|
||||||
|
logger.info(f"Processing video: {frame_width}x{frame_height} @ {fps}fps, {total_frames} frames")
|
||||||
|
|
||||||
|
# Setup VideoWriter
|
||||||
|
out_writer = None
|
||||||
|
if self.output_mode == "alpha_channel":
|
||||||
|
success = self._setup_alpha_encoder(output_video_path, frame_width, frame_height, fps, bitrate)
|
||||||
|
if not success:
|
||||||
|
logger.error("Failed to setup alpha channel encoder")
|
||||||
|
cap.release()
|
||||||
|
return False
|
||||||
|
use_nvenc = False
|
||||||
|
elif use_nvenc:
|
||||||
|
success = self._setup_nvenc_encoder(output_video_path, frame_width, frame_height, fps, bitrate)
|
||||||
|
if not success:
|
||||||
|
logger.warning("NVENC setup failed, falling back to OpenCV")
|
||||||
|
use_nvenc = False
|
||||||
|
|
||||||
|
if not use_nvenc and self.output_mode != "alpha_channel":
|
||||||
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
||||||
|
out_writer = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height))
|
||||||
|
if not out_writer.isOpened():
|
||||||
|
logger.error("Failed to create output video writer")
|
||||||
|
cap.release()
|
||||||
|
return False
|
||||||
|
|
||||||
|
# Process frames in batches
|
||||||
|
frame_idx = 0
|
||||||
|
processed_frames = 0
|
||||||
|
|
||||||
|
while frame_idx < total_frames:
|
||||||
|
batch_frames = []
|
||||||
|
batch_masks = []
|
||||||
|
|
||||||
|
# Read a batch of frames
|
||||||
|
for _ in range(batch_size):
|
||||||
|
ret, frame = cap.read()
|
||||||
|
if not ret:
|
||||||
|
break
|
||||||
|
batch_frames.append(frame)
|
||||||
|
|
||||||
|
if not batch_frames:
|
||||||
|
break
|
||||||
|
|
||||||
|
# Get masks for the current batch and perform just-in-time upscaling
|
||||||
|
for i in range(len(batch_frames)):
|
||||||
|
current_frame_idx = frame_idx + i
|
||||||
|
if current_frame_idx in video_segments:
|
||||||
|
frame_masks = video_segments[current_frame_idx]
|
||||||
|
upscaled_masks = []
|
||||||
|
for obj_id, mask in frame_masks.items():
|
||||||
|
mask = mask.squeeze()
|
||||||
|
if mask.shape != (frame_height, frame_width):
|
||||||
|
upscaled_mask = cv2.resize(mask.astype(np.uint8),
|
||||||
|
(frame_width, frame_height),
|
||||||
|
interpolation=cv2.INTER_NEAREST)
|
||||||
|
upscaled_masks.append(upscaled_mask)
|
||||||
|
else:
|
||||||
|
upscaled_masks.append(mask.astype(np.uint8))
|
||||||
|
batch_masks.append(upscaled_masks)
|
||||||
|
else:
|
||||||
|
batch_masks.append([]) # No masks for this frame
|
||||||
|
|
||||||
|
# Process the batch
|
||||||
|
result_batch = []
|
||||||
|
for i, frame in enumerate(batch_frames):
|
||||||
|
masks = batch_masks[i]
|
||||||
|
if masks:
|
||||||
|
if self.output_mode == "alpha_channel":
|
||||||
|
result_frame = self.apply_mask_with_alpha(frame, masks)
|
||||||
|
else:
|
||||||
|
result_frame = self.apply_green_mask(frame, masks)
|
||||||
|
else:
|
||||||
|
# No mask for this frame
|
||||||
|
if self.output_mode == "alpha_channel":
|
||||||
|
bgra_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2BGRA)
|
||||||
|
bgra_frame[:, :, 3] = 0
|
||||||
|
result_frame = bgra_frame
|
||||||
|
else:
|
||||||
|
result_frame = frame
|
||||||
|
result_batch.append(result_frame)
|
||||||
|
|
||||||
|
# Write the processed batch
|
||||||
|
for result_frame in result_batch:
|
||||||
|
if self.output_mode == "alpha_channel" and hasattr(self, 'alpha_process'):
|
||||||
|
self.alpha_process.stdin.write(result_frame.tobytes())
|
||||||
|
elif use_nvenc and hasattr(self, 'nvenc_process'):
|
||||||
|
self.nvenc_process.stdin.write(result_frame.tobytes())
|
||||||
|
else:
|
||||||
|
out_writer.write(result_frame)
|
||||||
|
|
||||||
|
processed_frames += len(batch_frames)
|
||||||
|
frame_idx += len(batch_frames)
|
||||||
|
|
||||||
|
if processed_frames % 100 < batch_size:
|
||||||
|
logger.info(f"Processed {processed_frames}/{total_frames} frames")
|
||||||
|
|
||||||
|
# Cleanup
|
||||||
|
cap.release()
|
||||||
|
if self.output_mode == "alpha_channel" and hasattr(self, 'alpha_process'):
|
||||||
|
self.alpha_process.stdin.close()
|
||||||
|
self.alpha_process.wait()
|
||||||
|
elif use_nvenc and hasattr(self, 'nvenc_process'):
|
||||||
|
self.nvenc_process.stdin.close()
|
||||||
|
self.nvenc_process.wait()
|
||||||
|
else:
|
||||||
|
if out_writer:
|
||||||
|
out_writer.release()
|
||||||
|
|
||||||
|
logger.info(f"Successfully processed {processed_frames} frames to {output_video_path}")
|
||||||
|
return True
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error processing video: {e}", exc_info=True)
|
||||||
|
return False
|
||||||
|
|
||||||
|
def _setup_nvenc_encoder(self, output_path: str, width: int, height: int,
|
||||||
|
fps: float, bitrate: str) -> bool:
|
||||||
|
"""Setup NVENC hardware encoder using FFmpeg."""
|
||||||
|
try:
|
||||||
|
# Determine encoder based on platform
|
||||||
|
if sys.platform == 'darwin':
|
||||||
|
encoder = 'hevc_videotoolbox'
|
||||||
|
else:
|
||||||
|
encoder = 'hevc_nvenc'
|
||||||
|
|
||||||
|
command = [
|
||||||
|
'ffmpeg',
|
||||||
|
'-y', # Overwrite output file
|
||||||
|
'-f', 'rawvideo',
|
||||||
|
'-vcodec', 'rawvideo',
|
||||||
|
'-pix_fmt', 'bgr24',
|
||||||
|
'-s', f'{width}x{height}',
|
||||||
|
'-r', str(fps),
|
||||||
|
'-i', '-', # Input from stdin
|
||||||
|
'-an', # No audio (will be added later)
|
||||||
|
'-vcodec', encoder,
|
||||||
|
'-pix_fmt', 'yuv420p', # Changed from nv12 for better compatibility
|
||||||
|
'-preset', 'slow',
|
||||||
|
'-b:v', bitrate,
|
||||||
|
output_path
|
||||||
|
]
|
||||||
|
|
||||||
|
self.nvenc_process = subprocess.Popen(command, stdin=subprocess.PIPE,
|
||||||
|
stderr=subprocess.PIPE)
|
||||||
|
logger.info(f"Initialized {encoder} hardware encoder")
|
||||||
|
return True
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to setup NVENC encoder: {e}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
def _setup_alpha_encoder(self, output_path: str, width: int, height: int,
|
||||||
|
fps: float, bitrate: str) -> bool:
|
||||||
|
"""Setup encoder for alpha channel video using FFmpeg with H.264/H.265."""
|
||||||
|
try:
|
||||||
|
# For VR180 SBS, we'll use H.265 (HEVC) with alpha channel
|
||||||
|
# Note: Standard H.264/H.265 don't support alpha directly,
|
||||||
|
# so we'll encode the alpha as a separate grayscale channel or use a special pixel format
|
||||||
|
|
||||||
|
# Determine encoder based on platform
|
||||||
|
if sys.platform == 'darwin':
|
||||||
|
encoder = 'hevc_videotoolbox'
|
||||||
|
else:
|
||||||
|
encoder = 'hevc_nvenc'
|
||||||
|
|
||||||
|
command = [
|
||||||
|
'ffmpeg',
|
||||||
|
'-y', # Overwrite output file
|
||||||
|
'-f', 'rawvideo',
|
||||||
|
'-vcodec', 'rawvideo',
|
||||||
|
'-pix_fmt', 'bgra', # BGRA for alpha channel
|
||||||
|
'-s', f'{width}x{height}',
|
||||||
|
'-r', str(fps),
|
||||||
|
'-i', '-', # Input from stdin
|
||||||
|
'-an', # No audio (will be added later)
|
||||||
|
'-c:v', encoder,
|
||||||
|
'-pix_fmt', 'yuv420p', # Standard pixel format
|
||||||
|
'-preset', 'slow',
|
||||||
|
'-b:v', bitrate,
|
||||||
|
'-tag:v', 'hvc1', # Required for some players
|
||||||
|
output_path
|
||||||
|
]
|
||||||
|
|
||||||
|
self.alpha_process = subprocess.Popen(command, stdin=subprocess.PIPE,
|
||||||
|
stderr=subprocess.PIPE)
|
||||||
|
self.alpha_output_path = output_path
|
||||||
|
logger.info(f"Initialized {encoder} for alpha channel output (will be encoded as transparency in RGB)")
|
||||||
|
return True
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to setup alpha encoder: {e}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
def process_segment(self, segment_info: dict, video_segments: Dict[int, Dict[int, np.ndarray]],
|
||||||
|
use_nvenc: bool = False, bitrate: str = "50M") -> bool:
|
||||||
|
"""
|
||||||
|
Process a single segment and save the output video.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
segment_info: Segment information dictionary
|
||||||
|
video_segments: Dictionary of frame masks from SAM2
|
||||||
|
use_nvenc: Whether to use hardware encoding
|
||||||
|
bitrate: Output video bitrate
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
True if successful
|
||||||
|
"""
|
||||||
|
input_video = segment_info['video_file']
|
||||||
|
if self.output_mode == "alpha_channel":
|
||||||
|
output_video = os.path.join(segment_info['directory'], f"output_{segment_info['index']}.mov")
|
||||||
|
else:
|
||||||
|
output_video = os.path.join(segment_info['directory'], f"output_{segment_info['index']}.mp4")
|
||||||
|
|
||||||
|
logger.info(f"Processing segment {segment_info['index']} with {self.output_mode}")
|
||||||
|
|
||||||
|
success = self.process_and_save_output_video(
|
||||||
|
input_video,
|
||||||
|
output_video,
|
||||||
|
video_segments,
|
||||||
|
use_nvenc,
|
||||||
|
bitrate
|
||||||
|
)
|
||||||
|
|
||||||
|
if success:
|
||||||
|
logger.info(f"Successfully created {self.output_mode} video: {output_video}")
|
||||||
|
# Mark segment as completed only after video is successfully written
|
||||||
|
try:
|
||||||
|
output_done_file = os.path.join(segment_info['directory'], "output_frames_done")
|
||||||
|
with open(output_done_file, 'w') as f:
|
||||||
|
f.write(f"Segment {segment_info['index']} processed and saved successfully.")
|
||||||
|
logger.debug(f"Created completion marker for segment {segment_info['index']}")
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to create completion marker for segment {segment_info['index']}: {e}")
|
||||||
|
else:
|
||||||
|
logger.error(f"Failed to process segment {segment_info['index']}")
|
||||||
|
|
||||||
|
return success
|
||||||
|
|
||||||
|
def create_full_greenscreen_frame(self, frame_shape: Tuple[int, int, int],
|
||||||
|
green_color: Optional[List[int]] = None) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Create a full greenscreen frame for fallback when no humans are detected.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
frame_shape: Shape of the frame (height, width, channels)
|
||||||
|
green_color: RGB values for green screen color (uses default if None)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Full greenscreen frame
|
||||||
|
"""
|
||||||
|
if green_color is None:
|
||||||
|
green_color = self.green_color
|
||||||
|
|
||||||
|
greenscreen_frame = np.full(frame_shape, green_color, dtype=np.uint8)
|
||||||
|
logger.debug(f"Created full greenscreen frame with shape {frame_shape}")
|
||||||
|
return greenscreen_frame
|
||||||
|
|
||||||
|
def process_greenscreen_only_segment(self, segment_info: dict,
|
||||||
|
green_color: Optional[List[int]] = None,
|
||||||
|
use_nvenc: bool = False, bitrate: str = "50M") -> bool:
|
||||||
|
"""
|
||||||
|
Create a full greenscreen segment when no humans are detected.
|
||||||
|
Used as fallback in separate eye processing mode.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
segment_info: Segment information dictionary
|
||||||
|
green_color: RGB values for green screen color (uses default if None)
|
||||||
|
use_nvenc: Whether to use hardware encoding
|
||||||
|
bitrate: Output video bitrate
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
True if greenscreen segment was created successfully
|
||||||
|
"""
|
||||||
|
segment_dir = segment_info['directory']
|
||||||
|
video_path = segment_info['video_file']
|
||||||
|
segment_idx = segment_info['index']
|
||||||
|
|
||||||
|
logger.info(f"Creating full greenscreen segment {segment_idx} (no humans detected)")
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Get video properties
|
||||||
|
cap = cv2.VideoCapture(video_path)
|
||||||
|
if not cap.isOpened():
|
||||||
|
logger.error(f"Could not open video: {video_path}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||||
|
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||||
|
fps = cap.get(cv2.CAP_PROP_FPS) or 30.0
|
||||||
|
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
||||||
|
cap.release()
|
||||||
|
|
||||||
|
# Create output video path
|
||||||
|
if self.output_mode == "alpha_channel":
|
||||||
|
output_video_path = os.path.join(segment_dir, f"output_{segment_idx}.mov")
|
||||||
|
else:
|
||||||
|
output_video_path = os.path.join(segment_dir, f"output_{segment_idx}.mp4")
|
||||||
|
|
||||||
|
# Create greenscreen frame
|
||||||
|
if green_color is None:
|
||||||
|
green_color = self.green_color
|
||||||
|
|
||||||
|
greenscreen_frame = self.create_full_greenscreen_frame(
|
||||||
|
(height, width, 3), green_color
|
||||||
|
)
|
||||||
|
|
||||||
|
# Setup video writer based on mode and hardware encoding preference
|
||||||
|
if use_nvenc:
|
||||||
|
success = self._write_greenscreen_with_nvenc(
|
||||||
|
output_video_path, greenscreen_frame, frame_count, fps, bitrate
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
success = self._write_greenscreen_with_opencv(
|
||||||
|
output_video_path, greenscreen_frame, frame_count, fps
|
||||||
|
)
|
||||||
|
|
||||||
|
if not success:
|
||||||
|
logger.error(f"Failed to write greenscreen video for segment {segment_idx}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
# Create empty mask file (black mask since no humans detected)
|
||||||
|
mask_output_path = os.path.join(segment_dir, "mask.png")
|
||||||
|
black_mask = np.zeros((height, width, 3), dtype=np.uint8)
|
||||||
|
cv2.imwrite(mask_output_path, black_mask)
|
||||||
|
|
||||||
|
# Mark segment as completed
|
||||||
|
output_done_file = os.path.join(segment_dir, "output_frames_done")
|
||||||
|
with open(output_done_file, 'w') as f:
|
||||||
|
f.write(f"Greenscreen segment {segment_idx} completed successfully\n")
|
||||||
|
|
||||||
|
logger.info(f"Successfully created greenscreen segment {segment_idx}")
|
||||||
|
return True
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error creating greenscreen segment {segment_idx}: {e}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
def _write_greenscreen_with_opencv(self, output_path: str, greenscreen_frame: np.ndarray,
|
||||||
|
frame_count: int, fps: float) -> bool:
|
||||||
|
"""Write greenscreen video using OpenCV VideoWriter."""
|
||||||
|
try:
|
||||||
|
if self.output_mode == "alpha_channel":
|
||||||
|
# For alpha channel mode, create fully transparent frames
|
||||||
|
bgra_frame = cv2.cvtColor(greenscreen_frame, cv2.COLOR_BGR2BGRA)
|
||||||
|
bgra_frame[:, :, 3] = 0 # Fully transparent
|
||||||
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
||||||
|
out = cv2.VideoWriter(output_path, fourcc, fps,
|
||||||
|
(greenscreen_frame.shape[1], greenscreen_frame.shape[0]), True)
|
||||||
|
frame_to_write = bgra_frame[:, :, :3] # OpenCV expects BGR for mp4v
|
||||||
|
else:
|
||||||
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
||||||
|
out = cv2.VideoWriter(output_path, fourcc, fps,
|
||||||
|
(greenscreen_frame.shape[1], greenscreen_frame.shape[0]))
|
||||||
|
frame_to_write = greenscreen_frame
|
||||||
|
|
||||||
|
if not out.isOpened():
|
||||||
|
logger.error(f"Failed to open video writer for {output_path}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
# Write identical greenscreen frames
|
||||||
|
for _ in range(frame_count):
|
||||||
|
out.write(frame_to_write)
|
||||||
|
|
||||||
|
out.release()
|
||||||
|
logger.debug(f"Wrote {frame_count} greenscreen frames using OpenCV")
|
||||||
|
return True
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error writing greenscreen with OpenCV: {e}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
def _write_greenscreen_with_nvenc(self, output_path: str, greenscreen_frame: np.ndarray,
|
||||||
|
frame_count: int, fps: float, bitrate: str) -> bool:
|
||||||
|
"""Write greenscreen video using NVENC hardware encoding."""
|
||||||
|
try:
|
||||||
|
# Setup NVENC encoder
|
||||||
|
if not self._setup_nvenc_encoder(output_path,
|
||||||
|
greenscreen_frame.shape[1],
|
||||||
|
greenscreen_frame.shape[0],
|
||||||
|
fps, bitrate):
|
||||||
|
logger.warning("NVENC setup failed for greenscreen, falling back to OpenCV")
|
||||||
|
return self._write_greenscreen_with_opencv(output_path, greenscreen_frame, frame_count, fps)
|
||||||
|
|
||||||
|
# Write identical greenscreen frames
|
||||||
|
for _ in range(frame_count):
|
||||||
|
self.nvenc_process.stdin.write(greenscreen_frame.tobytes())
|
||||||
|
|
||||||
|
# Finalize encoding
|
||||||
|
self.nvenc_process.stdin.close()
|
||||||
|
self.nvenc_process.wait()
|
||||||
|
|
||||||
|
if self.nvenc_process.returncode != 0:
|
||||||
|
logger.error("NVENC encoding failed for greenscreen")
|
||||||
|
return False
|
||||||
|
|
||||||
|
logger.debug(f"Wrote {frame_count} greenscreen frames using NVENC")
|
||||||
|
return True
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error writing greenscreen with NVENC: {e}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
def has_valid_masks(self, video_segments: Optional[Dict[int, Dict[int, np.ndarray]]]) -> bool:
|
||||||
|
"""
|
||||||
|
Check if video segments contain valid masks.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
video_segments: Video segments dictionary from SAM2
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
True if valid masks are found
|
||||||
|
"""
|
||||||
|
if not video_segments:
|
||||||
|
return False
|
||||||
|
|
||||||
|
# Check if any frame has non-empty masks
|
||||||
|
for frame_idx, frame_masks in video_segments.items():
|
||||||
|
for obj_id, mask in frame_masks.items():
|
||||||
|
if mask is not None and np.any(mask):
|
||||||
|
return True
|
||||||
|
|
||||||
|
return False
|
||||||
@@ -8,16 +8,20 @@ import cv2
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
import logging
|
import logging
|
||||||
|
import subprocess
|
||||||
import gc
|
import gc
|
||||||
from typing import Dict, List, Any, Optional, Tuple
|
from typing import Dict, List, Any, Optional, Tuple
|
||||||
from sam2.build_sam import build_sam2_video_predictor
|
from sam2.build_sam import build_sam2_video_predictor
|
||||||
|
from .eye_processor import EyeProcessor
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
class SAM2Processor:
|
class SAM2Processor:
|
||||||
"""Handles SAM2-based video segmentation for human tracking."""
|
"""Handles SAM2-based video segmentation for human tracking."""
|
||||||
|
|
||||||
def __init__(self, checkpoint_path: str, config_path: str, vos_optimized: bool = False):
|
def __init__(self, checkpoint_path: str, config_path: str, vos_optimized: bool = False,
|
||||||
|
separate_eye_processing: bool = False, eye_overlap_pixels: int = 0,
|
||||||
|
async_preprocessor=None):
|
||||||
"""
|
"""
|
||||||
Initialize SAM2 processor.
|
Initialize SAM2 processor.
|
||||||
|
|
||||||
@@ -25,11 +29,23 @@ class SAM2Processor:
|
|||||||
checkpoint_path: Path to SAM2 checkpoint
|
checkpoint_path: Path to SAM2 checkpoint
|
||||||
config_path: Path to SAM2 config file
|
config_path: Path to SAM2 config file
|
||||||
vos_optimized: Enable VOS optimization for speedup (requires PyTorch 2.5.1+)
|
vos_optimized: Enable VOS optimization for speedup (requires PyTorch 2.5.1+)
|
||||||
|
separate_eye_processing: Enable VR180 separate eye processing mode
|
||||||
|
eye_overlap_pixels: Pixel overlap between eyes for blending
|
||||||
|
async_preprocessor: Optional async preprocessor for background low-res video generation
|
||||||
"""
|
"""
|
||||||
self.checkpoint_path = checkpoint_path
|
self.checkpoint_path = checkpoint_path
|
||||||
self.config_path = config_path
|
self.config_path = config_path
|
||||||
self.vos_optimized = vos_optimized
|
self.vos_optimized = vos_optimized
|
||||||
|
self.separate_eye_processing = separate_eye_processing
|
||||||
|
self.async_preprocessor = async_preprocessor
|
||||||
self.predictor = None
|
self.predictor = None
|
||||||
|
|
||||||
|
# Initialize eye processor if separate eye processing is enabled
|
||||||
|
if separate_eye_processing:
|
||||||
|
self.eye_processor = EyeProcessor(eye_overlap_pixels=eye_overlap_pixels)
|
||||||
|
else:
|
||||||
|
self.eye_processor = None
|
||||||
|
|
||||||
self._initialize_predictor()
|
self._initialize_predictor()
|
||||||
|
|
||||||
def _initialize_predictor(self):
|
def _initialize_predictor(self):
|
||||||
@@ -108,13 +124,64 @@ class SAM2Processor:
|
|||||||
|
|
||||||
def create_low_res_video(self, input_video_path: str, output_video_path: str, scale: float):
|
def create_low_res_video(self, input_video_path: str, output_video_path: str, scale: float):
|
||||||
"""
|
"""
|
||||||
Create a low-resolution version of the input video for inference.
|
Create a low-resolution version of the input video for inference using FFmpeg
|
||||||
|
with hardware acceleration for improved performance.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
input_video_path: Path to input video
|
input_video_path: Path to input video
|
||||||
output_video_path: Path to output low-res video
|
output_video_path: Path to output low-res video
|
||||||
scale: Scale factor for resolution reduction
|
scale: Scale factor for resolution reduction
|
||||||
"""
|
"""
|
||||||
|
try:
|
||||||
|
# Get video properties using OpenCV
|
||||||
|
cap = cv2.VideoCapture(input_video_path)
|
||||||
|
if not cap.isOpened():
|
||||||
|
raise ValueError(f"Could not open video: {input_video_path}")
|
||||||
|
|
||||||
|
original_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||||
|
original_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||||
|
fps = cap.get(cv2.CAP_PROP_FPS) or 30.0
|
||||||
|
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
||||||
|
cap.release()
|
||||||
|
|
||||||
|
target_width = int(original_width * scale)
|
||||||
|
target_height = int(original_height * scale)
|
||||||
|
|
||||||
|
# Ensure dimensions are even, as required by many codecs
|
||||||
|
target_width = target_width if target_width % 2 == 0 else target_width + 1
|
||||||
|
target_height = target_height if target_height % 2 == 0 else target_height + 1
|
||||||
|
|
||||||
|
# Construct FFmpeg command with hardware acceleration
|
||||||
|
command = [
|
||||||
|
'ffmpeg',
|
||||||
|
'-y',
|
||||||
|
'-hwaccel', 'auto', # Auto-detect hardware acceleration
|
||||||
|
'-i', input_video_path,
|
||||||
|
'-vf', f'scale={target_width}:{target_height}',
|
||||||
|
'-c:v', 'h264_nvenc', # Use NVIDIA's hardware encoder
|
||||||
|
'-preset', 'fast',
|
||||||
|
'-crf', '23',
|
||||||
|
output_video_path
|
||||||
|
]
|
||||||
|
|
||||||
|
logger.info(f"Executing FFmpeg command: {' '.join(command)}")
|
||||||
|
|
||||||
|
# Execute FFmpeg command
|
||||||
|
process = subprocess.run(command, check=True, capture_output=True, text=True)
|
||||||
|
|
||||||
|
if process.returncode != 0:
|
||||||
|
logger.error(f"FFmpeg failed with error: {process.stderr}")
|
||||||
|
raise RuntimeError(f"FFmpeg process failed: {process.stderr}")
|
||||||
|
|
||||||
|
logger.info(f"Created low-res video with {frame_count} frames: {output_video_path}")
|
||||||
|
|
||||||
|
except (subprocess.CalledProcessError, FileNotFoundError) as e:
|
||||||
|
logger.warning(f"Hardware-accelerated FFmpeg failed: {e}. Falling back to OpenCV.")
|
||||||
|
# Fallback to original OpenCV implementation if FFmpeg fails
|
||||||
|
self._create_low_res_video_opencv(input_video_path, output_video_path, scale)
|
||||||
|
|
||||||
|
def _create_low_res_video_opencv(self, input_video_path: str, output_video_path: str, scale: float):
|
||||||
|
"""Original OpenCV-based implementation for creating low-resolution video."""
|
||||||
cap = cv2.VideoCapture(input_video_path)
|
cap = cv2.VideoCapture(input_video_path)
|
||||||
if not cap.isOpened():
|
if not cap.isOpened():
|
||||||
raise ValueError(f"Could not open video: {input_video_path}")
|
raise ValueError(f"Could not open video: {input_video_path}")
|
||||||
@@ -139,9 +206,52 @@ class SAM2Processor:
|
|||||||
cap.release()
|
cap.release()
|
||||||
out.release()
|
out.release()
|
||||||
|
|
||||||
logger.info(f"Created low-res video with {frame_count} frames: {output_video_path}")
|
logger.info(f"Created low-res video with {frame_count} frames using OpenCV: {output_video_path}")
|
||||||
|
|
||||||
def add_yolo_prompts_to_predictor(self, inference_state, prompts: List[Dict[str, Any]]) -> bool:
|
def ensure_low_res_video(self, input_video_path: str, output_video_path: str,
|
||||||
|
scale: float, segment_idx: Optional[int] = None) -> bool:
|
||||||
|
"""
|
||||||
|
Ensure low-resolution video exists, using async preprocessor if available.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
input_video_path: Path to input video
|
||||||
|
output_video_path: Path to output low-res video
|
||||||
|
scale: Scale factor for resolution reduction
|
||||||
|
segment_idx: Optional segment index for async coordination
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
True if low-res video is ready
|
||||||
|
"""
|
||||||
|
# Check if already exists
|
||||||
|
if os.path.exists(output_video_path) and os.path.getsize(output_video_path) > 0:
|
||||||
|
return True
|
||||||
|
|
||||||
|
# Use async preprocessor if available and segment index provided
|
||||||
|
if self.async_preprocessor and segment_idx is not None:
|
||||||
|
if self.async_preprocessor.is_segment_ready(segment_idx):
|
||||||
|
if os.path.exists(output_video_path) and os.path.getsize(output_video_path) > 0:
|
||||||
|
logger.debug(f"Async preprocessor provided segment {segment_idx}")
|
||||||
|
return True
|
||||||
|
else:
|
||||||
|
logger.debug(f"Async preprocessor hasn't completed segment {segment_idx} yet")
|
||||||
|
|
||||||
|
# Fallback to synchronous creation
|
||||||
|
try:
|
||||||
|
logger.info(f"Creating low-res video synchronously: {input_video_path} -> {output_video_path}")
|
||||||
|
self.create_low_res_video(input_video_path, output_video_path, scale)
|
||||||
|
|
||||||
|
if os.path.exists(output_video_path) and os.path.getsize(output_video_path) > 0:
|
||||||
|
logger.info(f"Successfully created low-res video: {output_video_path} ({os.path.getsize(output_video_path)} bytes)")
|
||||||
|
return True
|
||||||
|
else:
|
||||||
|
logger.error(f"Low-res video creation failed - file doesn't exist or is empty: {output_video_path}")
|
||||||
|
return False
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to create low-res video {output_video_path}: {e}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
def add_yolo_prompts_to_predictor(self, inference_state, prompts: List[Dict[str, Any]],
|
||||||
|
inference_scale: float = 1.0) -> bool:
|
||||||
"""
|
"""
|
||||||
Add YOLO detection prompts to SAM2 predictor.
|
Add YOLO detection prompts to SAM2 predictor.
|
||||||
Includes error handling matching the working spec.md implementation.
|
Includes error handling matching the working spec.md implementation.
|
||||||
@@ -149,6 +259,7 @@ class SAM2Processor:
|
|||||||
Args:
|
Args:
|
||||||
inference_state: SAM2 inference state
|
inference_state: SAM2 inference state
|
||||||
prompts: List of prompt dictionaries with obj_id and bbox
|
prompts: List of prompt dictionaries with obj_id and bbox
|
||||||
|
inference_scale: Scale factor to apply to bounding boxes
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
True if prompts were added successfully
|
True if prompts were added successfully
|
||||||
@@ -166,14 +277,20 @@ class SAM2Processor:
|
|||||||
bbox = prompt['bbox']
|
bbox = prompt['bbox']
|
||||||
confidence = prompt.get('confidence', 'unknown')
|
confidence = prompt.get('confidence', 'unknown')
|
||||||
|
|
||||||
logger.info(f"SAM2 Debug: Adding prompt {i+1}/{len(prompts)}: Object {obj_id}, bbox={bbox}, conf={confidence}")
|
# Scale bounding box for SAM2 inference resolution
|
||||||
|
scaled_bbox = bbox * inference_scale
|
||||||
|
|
||||||
|
logger.info(f"SAM2 Debug: Adding prompt {i+1}/{len(prompts)}: Object {obj_id}")
|
||||||
|
logger.info(f" Original bbox: {bbox}")
|
||||||
|
logger.info(f" Scaled bbox (scale={inference_scale}): {scaled_bbox}")
|
||||||
|
logger.info(f" Confidence: {confidence}")
|
||||||
|
|
||||||
try:
|
try:
|
||||||
_, out_obj_ids, out_mask_logits = self.predictor.add_new_points_or_box(
|
_, out_obj_ids, out_mask_logits = self.predictor.add_new_points_or_box(
|
||||||
inference_state=inference_state,
|
inference_state=inference_state,
|
||||||
frame_idx=0,
|
frame_idx=0,
|
||||||
obj_id=obj_id,
|
obj_id=obj_id,
|
||||||
box=bbox.astype(np.float32),
|
box=scaled_bbox.astype(np.float32),
|
||||||
)
|
)
|
||||||
|
|
||||||
logger.info(f"SAM2 Debug: ✓ Successfully added Object {obj_id} - returned obj_ids: {out_obj_ids}")
|
logger.info(f"SAM2 Debug: ✓ Successfully added Object {obj_id} - returned obj_ids: {out_obj_ids}")
|
||||||
@@ -329,14 +446,11 @@ class SAM2Processor:
|
|||||||
|
|
||||||
logger.info(f"Processing segment {segment_idx} with SAM2")
|
logger.info(f"Processing segment {segment_idx} with SAM2")
|
||||||
|
|
||||||
# Create low-resolution video for inference
|
# Create low-resolution video for inference (async-aware)
|
||||||
low_res_video_path = os.path.join(segment_dir, "low_res_video.mp4")
|
low_res_video_path = os.path.join(segment_dir, "low_res_video.mp4")
|
||||||
if not os.path.exists(low_res_video_path):
|
if not self.ensure_low_res_video(video_path, low_res_video_path, inference_scale, segment_idx):
|
||||||
try:
|
logger.error(f"Failed to create low-res video for segment {segment_idx}")
|
||||||
self.create_low_res_video(video_path, low_res_video_path, inference_scale)
|
return None
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"Failed to create low-res video for segment {segment_idx}: {e}")
|
|
||||||
return None
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
# Initialize inference state
|
# Initialize inference state
|
||||||
@@ -344,7 +458,7 @@ class SAM2Processor:
|
|||||||
|
|
||||||
# Add prompts or previous masks
|
# Add prompts or previous masks
|
||||||
if yolo_prompts:
|
if yolo_prompts:
|
||||||
if not self.add_yolo_prompts_to_predictor(inference_state, yolo_prompts):
|
if not self.add_yolo_prompts_to_predictor(inference_state, yolo_prompts, inference_scale):
|
||||||
return None
|
return None
|
||||||
elif previous_masks:
|
elif previous_masks:
|
||||||
if not self.add_previous_masks_to_predictor(inference_state, previous_masks):
|
if not self.add_previous_masks_to_predictor(inference_state, previous_masks):
|
||||||
@@ -375,13 +489,7 @@ class SAM2Processor:
|
|||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.warning(f"Could not remove low-res video: {e}")
|
logger.warning(f"Could not remove low-res video: {e}")
|
||||||
|
|
||||||
# Mark segment as completed (for resume capability)
|
|
||||||
try:
|
|
||||||
with open(output_done_file, 'w') as f:
|
|
||||||
f.write(f"Segment {segment_idx} completed successfully\n")
|
|
||||||
logger.debug(f"Marked segment {segment_idx} as completed")
|
|
||||||
except Exception as e:
|
|
||||||
logger.warning(f"Could not create completion marker: {e}")
|
|
||||||
|
|
||||||
return video_segments
|
return video_segments
|
||||||
|
|
||||||
@@ -490,7 +598,7 @@ class SAM2Processor:
|
|||||||
inference_state = self.predictor.init_state(video_path=temp_video_path, async_loading_frames=True)
|
inference_state = self.predictor.init_state(video_path=temp_video_path, async_loading_frames=True)
|
||||||
|
|
||||||
# Add prompts
|
# Add prompts
|
||||||
if not self.add_yolo_prompts_to_predictor(inference_state, prompts):
|
if not self.add_yolo_prompts_to_predictor(inference_state, prompts, inference_scale):
|
||||||
logger.error("Failed to add prompts for first frame debug")
|
logger.error("Failed to add prompts for first frame debug")
|
||||||
return False
|
return False
|
||||||
|
|
||||||
@@ -650,3 +758,250 @@ class SAM2Processor:
|
|||||||
else:
|
else:
|
||||||
logger.error("SAM2 Mid-segment: FAILED - No prompts were successfully added")
|
logger.error("SAM2 Mid-segment: FAILED - No prompts were successfully added")
|
||||||
return False
|
return False
|
||||||
|
|
||||||
|
def process_single_eye_segment(self, segment_info: dict, eye_side: str,
|
||||||
|
yolo_prompts: Optional[List[Dict[str, Any]]] = None,
|
||||||
|
previous_masks: Optional[Dict[int, np.ndarray]] = None,
|
||||||
|
inference_scale: float = 0.5) -> Optional[Dict[int, np.ndarray]]:
|
||||||
|
"""
|
||||||
|
Process a single eye of a VR180 segment with SAM2.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
segment_info: Segment information dictionary
|
||||||
|
eye_side: 'left' or 'right' eye
|
||||||
|
yolo_prompts: Optional YOLO detection prompts for first frame
|
||||||
|
previous_masks: Optional masks from previous segment
|
||||||
|
inference_scale: Scale factor for inference
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Dictionary mapping frame indices to masks, or None if failed
|
||||||
|
"""
|
||||||
|
if not self.eye_processor:
|
||||||
|
logger.error("Eye processor not initialized - separate_eye_processing must be enabled")
|
||||||
|
return None
|
||||||
|
|
||||||
|
segment_dir = segment_info['directory']
|
||||||
|
video_path = segment_info['video_file']
|
||||||
|
segment_idx = segment_info['index']
|
||||||
|
|
||||||
|
logger.info(f"Processing {eye_side} eye for segment {segment_idx}")
|
||||||
|
|
||||||
|
# Use the video path directly (it should already be the eye-specific video)
|
||||||
|
eye_video_path = video_path
|
||||||
|
|
||||||
|
# Verify the eye video exists
|
||||||
|
if not os.path.exists(eye_video_path):
|
||||||
|
logger.error(f"Eye video not found: {eye_video_path}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
# Create low-resolution eye video for inference (async-aware)
|
||||||
|
low_res_eye_video_path = os.path.join(segment_dir, f"low_res_{eye_side}_eye_video.mp4")
|
||||||
|
if not self.ensure_low_res_video(eye_video_path, low_res_eye_video_path, inference_scale, segment_idx):
|
||||||
|
logger.error(f"Failed to create low-res {eye_side} eye video for segment {segment_idx}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Initialize inference state with eye-specific video
|
||||||
|
inference_state = self.predictor.init_state(video_path=low_res_eye_video_path, async_loading_frames=True)
|
||||||
|
|
||||||
|
# Add prompts or previous masks (always use obj_id=1 for single eye processing)
|
||||||
|
if yolo_prompts:
|
||||||
|
# Convert prompts to use obj_id=1 for single eye processing
|
||||||
|
eye_prompts = []
|
||||||
|
for prompt in yolo_prompts:
|
||||||
|
eye_prompt = prompt.copy()
|
||||||
|
eye_prompt['obj_id'] = 1 # Always use obj_id=1 for single eye
|
||||||
|
eye_prompts.append(eye_prompt)
|
||||||
|
|
||||||
|
if not self.add_yolo_prompts_to_predictor(inference_state, eye_prompts, inference_scale):
|
||||||
|
logger.error(f"Failed to add prompts for {eye_side} eye")
|
||||||
|
return None
|
||||||
|
|
||||||
|
elif previous_masks:
|
||||||
|
# Convert previous masks to use obj_id=1 for single eye processing
|
||||||
|
eye_masks = {1: list(previous_masks.values())[0]} if previous_masks else {}
|
||||||
|
if not self.add_previous_masks_to_predictor(inference_state, eye_masks):
|
||||||
|
logger.error(f"Failed to add previous masks for {eye_side} eye")
|
||||||
|
return None
|
||||||
|
else:
|
||||||
|
logger.error(f"No prompts or previous masks available for {eye_side} eye of segment {segment_idx}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
# Propagate masks
|
||||||
|
logger.info(f"Propagating masks for {eye_side} eye")
|
||||||
|
video_segments = self.propagate_masks(inference_state)
|
||||||
|
|
||||||
|
# Extract just the masks (remove obj_id structure since we only use obj_id=1)
|
||||||
|
eye_masks = {}
|
||||||
|
for frame_idx, frame_masks in video_segments.items():
|
||||||
|
if 1 in frame_masks: # We always use obj_id=1 for single eye processing
|
||||||
|
eye_masks[frame_idx] = frame_masks[1]
|
||||||
|
|
||||||
|
# Clean up
|
||||||
|
self.predictor.reset_state(inference_state)
|
||||||
|
del inference_state
|
||||||
|
gc.collect()
|
||||||
|
|
||||||
|
# Remove temporary low-res video
|
||||||
|
try:
|
||||||
|
os.remove(low_res_eye_video_path)
|
||||||
|
logger.debug(f"Removed low-res {eye_side} eye video: {low_res_eye_video_path}")
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Could not remove low-res {eye_side} eye video: {e}")
|
||||||
|
|
||||||
|
logger.info(f"Successfully processed {eye_side} eye with {len(eye_masks)} frames")
|
||||||
|
return eye_masks
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error processing {eye_side} eye for segment {segment_idx}: {e}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
def process_segment_with_separate_eyes(self, segment_info: dict,
|
||||||
|
left_prompts: Optional[List[Dict[str, Any]]] = None,
|
||||||
|
right_prompts: Optional[List[Dict[str, Any]]] = None,
|
||||||
|
previous_left_masks: Optional[Dict[int, np.ndarray]] = None,
|
||||||
|
previous_right_masks: Optional[Dict[int, np.ndarray]] = None,
|
||||||
|
inference_scale: float = 0.5,
|
||||||
|
full_frame_shape: Optional[Tuple[int, int]] = None) -> Optional[Dict[int, Dict[int, np.ndarray]]]:
|
||||||
|
"""
|
||||||
|
Process a VR180 segment with separate left and right eye processing.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
segment_info: Segment information dictionary
|
||||||
|
left_prompts: Optional YOLO prompts for left eye
|
||||||
|
right_prompts: Optional YOLO prompts for right eye
|
||||||
|
previous_left_masks: Optional previous masks for left eye
|
||||||
|
previous_right_masks: Optional previous masks for right eye
|
||||||
|
inference_scale: Scale factor for inference
|
||||||
|
full_frame_shape: Shape of full VR180 frame (height, width)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Combined video segments dictionary or None if failed
|
||||||
|
"""
|
||||||
|
if not self.eye_processor:
|
||||||
|
logger.error("Eye processor not initialized - separate_eye_processing must be enabled")
|
||||||
|
return None
|
||||||
|
|
||||||
|
segment_idx = segment_info['index']
|
||||||
|
logger.info(f"Processing segment {segment_idx} with separate eye processing")
|
||||||
|
|
||||||
|
# Get full frame shape if not provided
|
||||||
|
if full_frame_shape is None:
|
||||||
|
try:
|
||||||
|
cap = cv2.VideoCapture(segment_info['video_file'])
|
||||||
|
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||||
|
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||||
|
cap.release()
|
||||||
|
full_frame_shape = (height, width)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Could not determine frame shape: {e}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
# Process left eye if prompts or previous masks are available
|
||||||
|
left_masks = None
|
||||||
|
if left_prompts or previous_left_masks:
|
||||||
|
logger.info(f"Processing left eye for segment {segment_idx}")
|
||||||
|
left_masks = self.process_single_eye_segment(
|
||||||
|
segment_info, 'left', left_prompts, previous_left_masks, inference_scale
|
||||||
|
)
|
||||||
|
|
||||||
|
# Process right eye if prompts or previous masks are available
|
||||||
|
right_masks = None
|
||||||
|
if right_prompts or previous_right_masks:
|
||||||
|
logger.info(f"Processing right eye for segment {segment_idx}")
|
||||||
|
right_masks = self.process_single_eye_segment(
|
||||||
|
segment_info, 'right', right_prompts, previous_right_masks, inference_scale
|
||||||
|
)
|
||||||
|
|
||||||
|
# Combine masks back to full frame format
|
||||||
|
if left_masks or right_masks:
|
||||||
|
logger.info(f"Combining eye masks for segment {segment_idx}")
|
||||||
|
combined_masks = self.eye_processor.combine_eye_masks(
|
||||||
|
left_masks, right_masks, full_frame_shape
|
||||||
|
)
|
||||||
|
|
||||||
|
# Clean up eye-specific videos to save space
|
||||||
|
try:
|
||||||
|
left_eye_path = os.path.join(segment_info['directory'], "left_eye_video.mp4")
|
||||||
|
right_eye_path = os.path.join(segment_info['directory'], "right_eye_video.mp4")
|
||||||
|
|
||||||
|
if os.path.exists(left_eye_path):
|
||||||
|
os.remove(left_eye_path)
|
||||||
|
logger.debug(f"Removed left eye video: {left_eye_path}")
|
||||||
|
|
||||||
|
if os.path.exists(right_eye_path):
|
||||||
|
os.remove(right_eye_path)
|
||||||
|
logger.debug(f"Removed right eye video: {right_eye_path}")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Could not clean up eye videos: {e}")
|
||||||
|
|
||||||
|
logger.info(f"Successfully processed segment {segment_idx} with separate eyes")
|
||||||
|
return combined_masks
|
||||||
|
else:
|
||||||
|
logger.warning(f"No masks generated for either eye in segment {segment_idx}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
def create_greenscreen_segment(self, segment_info: dict, green_color: List[int] = [0, 255, 0]) -> bool:
|
||||||
|
"""
|
||||||
|
Create a full greenscreen segment when no humans are detected.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
segment_info: Segment information dictionary
|
||||||
|
green_color: RGB values for green screen color
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
True if greenscreen segment was created successfully
|
||||||
|
"""
|
||||||
|
segment_dir = segment_info['directory']
|
||||||
|
video_path = segment_info['video_file']
|
||||||
|
segment_idx = segment_info['index']
|
||||||
|
|
||||||
|
logger.info(f"Creating full greenscreen segment {segment_idx}")
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Get video properties
|
||||||
|
cap = cv2.VideoCapture(video_path)
|
||||||
|
if not cap.isOpened():
|
||||||
|
logger.error(f"Could not open video: {video_path}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||||
|
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||||
|
fps = cap.get(cv2.CAP_PROP_FPS)
|
||||||
|
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
||||||
|
cap.release()
|
||||||
|
|
||||||
|
# Create output video path
|
||||||
|
output_video_path = os.path.join(segment_dir, f"output_{segment_idx}.mp4")
|
||||||
|
|
||||||
|
# Create greenscreen frames
|
||||||
|
greenscreen_frame = self.eye_processor.create_full_greenscreen_frame(
|
||||||
|
(height, width, 3), green_color
|
||||||
|
)
|
||||||
|
|
||||||
|
# Write greenscreen video
|
||||||
|
fourcc = cv2.VideoWriter_fourcc(*'HEVC')
|
||||||
|
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
|
||||||
|
|
||||||
|
for _ in range(frame_count):
|
||||||
|
out.write(greenscreen_frame)
|
||||||
|
|
||||||
|
out.release()
|
||||||
|
|
||||||
|
# Create mask file (empty/black mask since no humans detected)
|
||||||
|
mask_output_path = os.path.join(segment_dir, "mask.png")
|
||||||
|
black_mask = np.zeros((height, width, 3), dtype=np.uint8)
|
||||||
|
cv2.imwrite(mask_output_path, black_mask)
|
||||||
|
|
||||||
|
# Mark segment as completed
|
||||||
|
output_done_file = os.path.join(segment_dir, "output_frames_done")
|
||||||
|
with open(output_done_file, 'w') as f:
|
||||||
|
f.write(f"Greenscreen segment {segment_idx} completed successfully\n")
|
||||||
|
|
||||||
|
logger.info(f"Successfully created greenscreen segment {segment_idx}")
|
||||||
|
return True
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error creating greenscreen segment {segment_idx}: {e}")
|
||||||
|
return False
|
||||||
|
|||||||
306
core/video_assembler.py
Normal file
306
core/video_assembler.py
Normal file
@@ -0,0 +1,306 @@
|
|||||||
|
"""
|
||||||
|
Video assembler module for concatenating processed segments.
|
||||||
|
Handles merging processed segments and adding audio from original video.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import subprocess
|
||||||
|
import logging
|
||||||
|
from typing import List, Optional
|
||||||
|
from utils.file_utils import get_segments_directories, file_exists
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
class VideoAssembler:
|
||||||
|
"""Handles final video assembly from processed segments."""
|
||||||
|
|
||||||
|
def __init__(self, preserve_audio: bool = True, use_nvenc: bool = False,
|
||||||
|
output_mode: str = "green_screen"):
|
||||||
|
"""
|
||||||
|
Initialize video assembler.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
preserve_audio: Whether to preserve audio from original video
|
||||||
|
use_nvenc: Whether to use hardware encoding for final output
|
||||||
|
output_mode: Output mode - "green_screen" or "alpha_channel"
|
||||||
|
"""
|
||||||
|
self.preserve_audio = preserve_audio
|
||||||
|
self.use_nvenc = use_nvenc
|
||||||
|
self.output_mode = output_mode
|
||||||
|
|
||||||
|
def create_concat_file(self, segments_dir: str, output_filename: str = "concat_list.txt") -> Optional[str]:
|
||||||
|
"""
|
||||||
|
Create a concatenation file for FFmpeg.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
segments_dir: Directory containing processed segments
|
||||||
|
output_filename: Name for the concat file
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Path to concat file or None if no valid segments found
|
||||||
|
"""
|
||||||
|
concat_path = os.path.join(segments_dir, output_filename)
|
||||||
|
valid_segments = 0
|
||||||
|
|
||||||
|
try:
|
||||||
|
segments = get_segments_directories(segments_dir)
|
||||||
|
|
||||||
|
with open(concat_path, 'w') as f:
|
||||||
|
for i, segment in enumerate(segments):
|
||||||
|
segment_dir = os.path.join(segments_dir, segment)
|
||||||
|
if self.output_mode == "alpha_channel":
|
||||||
|
output_video = os.path.join(segment_dir, f"output_{i}.mov")
|
||||||
|
else:
|
||||||
|
output_video = os.path.join(segment_dir, f"output_{i}.mp4")
|
||||||
|
|
||||||
|
if file_exists(output_video):
|
||||||
|
# Use relative path for FFmpeg
|
||||||
|
relative_path = os.path.relpath(output_video, segments_dir)
|
||||||
|
f.write(f"file '{relative_path}'\n")
|
||||||
|
valid_segments += 1
|
||||||
|
else:
|
||||||
|
logger.warning(f"Output video not found for segment {i}: {output_video}")
|
||||||
|
|
||||||
|
if valid_segments == 0:
|
||||||
|
logger.error("No valid output segments found for concatenation")
|
||||||
|
os.remove(concat_path)
|
||||||
|
return None
|
||||||
|
|
||||||
|
logger.info(f"Created concatenation file with {valid_segments} segments: {concat_path}")
|
||||||
|
return concat_path
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error creating concatenation file: {e}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
def concatenate_segments(self, segments_dir: str, output_path: str,
|
||||||
|
bitrate: str = "50M") -> bool:
|
||||||
|
"""
|
||||||
|
Concatenate video segments using FFmpeg.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
segments_dir: Directory containing processed segments
|
||||||
|
output_path: Path for final concatenated video
|
||||||
|
bitrate: Output video bitrate
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
True if successful
|
||||||
|
"""
|
||||||
|
# Create concatenation file
|
||||||
|
concat_file = self.create_concat_file(segments_dir)
|
||||||
|
if not concat_file:
|
||||||
|
return False
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Build FFmpeg command
|
||||||
|
if self.output_mode == "alpha_channel":
|
||||||
|
# For alpha channel, we need to maintain the ProRes codec
|
||||||
|
cmd = [
|
||||||
|
'ffmpeg',
|
||||||
|
'-y', # Overwrite output
|
||||||
|
'-f', 'concat',
|
||||||
|
'-safe', '0',
|
||||||
|
'-i', concat_file,
|
||||||
|
'-c:v', 'copy', # Copy video codec to preserve alpha
|
||||||
|
'-an', # No audio for now
|
||||||
|
output_path
|
||||||
|
]
|
||||||
|
else:
|
||||||
|
cmd = [
|
||||||
|
'ffmpeg',
|
||||||
|
'-y', # Overwrite output
|
||||||
|
'-f', 'concat',
|
||||||
|
'-safe', '0',
|
||||||
|
'-i', concat_file,
|
||||||
|
'-c:v', 'copy', # Copy video codec (no re-encoding)
|
||||||
|
'-an', # No audio for now
|
||||||
|
output_path
|
||||||
|
]
|
||||||
|
|
||||||
|
# Use hardware encoding if requested
|
||||||
|
if self.use_nvenc:
|
||||||
|
import sys
|
||||||
|
if sys.platform == 'darwin':
|
||||||
|
encoder = 'hevc_videotoolbox'
|
||||||
|
else:
|
||||||
|
encoder = 'hevc_nvenc'
|
||||||
|
|
||||||
|
# Re-encode with hardware acceleration
|
||||||
|
cmd = [
|
||||||
|
'ffmpeg',
|
||||||
|
'-y',
|
||||||
|
'-f', 'concat',
|
||||||
|
'-safe', '0',
|
||||||
|
'-i', concat_file,
|
||||||
|
'-c:v', encoder,
|
||||||
|
'-preset', 'slow',
|
||||||
|
'-b:v', bitrate,
|
||||||
|
'-pix_fmt', 'yuv420p',
|
||||||
|
'-an',
|
||||||
|
output_path
|
||||||
|
]
|
||||||
|
|
||||||
|
logger.info(f"Running concatenation command: {' '.join(cmd)}")
|
||||||
|
|
||||||
|
result = subprocess.run(cmd, capture_output=True, text=True)
|
||||||
|
|
||||||
|
if result.returncode != 0:
|
||||||
|
logger.error(f"FFmpeg concatenation failed: {result.stderr}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
logger.info(f"Successfully concatenated segments to: {output_path}")
|
||||||
|
|
||||||
|
# Clean up concat file
|
||||||
|
try:
|
||||||
|
os.remove(concat_file)
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
|
||||||
|
return True
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error during concatenation: {e}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
def copy_audio_from_original(self, original_video: str, processed_video: str,
|
||||||
|
final_output: str) -> bool:
|
||||||
|
"""
|
||||||
|
Copy audio track from original video to processed video.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
original_video: Path to original video with audio
|
||||||
|
processed_video: Path to processed video without audio
|
||||||
|
final_output: Path for final output with audio
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
True if successful
|
||||||
|
"""
|
||||||
|
if not self.preserve_audio:
|
||||||
|
logger.info("Audio preservation disabled, skipping audio copy")
|
||||||
|
return True
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Check if original video has audio
|
||||||
|
probe_cmd = [
|
||||||
|
'ffprobe',
|
||||||
|
'-v', 'error',
|
||||||
|
'-select_streams', 'a:0',
|
||||||
|
'-show_entries', 'stream=codec_type',
|
||||||
|
'-of', 'csv=p=0',
|
||||||
|
original_video
|
||||||
|
]
|
||||||
|
|
||||||
|
result = subprocess.run(probe_cmd, capture_output=True, text=True)
|
||||||
|
|
||||||
|
if result.returncode != 0 or result.stdout.strip() != 'audio':
|
||||||
|
logger.warning("Original video has no audio track")
|
||||||
|
# Just copy the processed video
|
||||||
|
import shutil
|
||||||
|
shutil.copy2(processed_video, final_output)
|
||||||
|
return True
|
||||||
|
|
||||||
|
# Copy audio from original to processed video
|
||||||
|
cmd = [
|
||||||
|
'ffmpeg',
|
||||||
|
'-y',
|
||||||
|
'-i', processed_video, # Video input
|
||||||
|
'-i', original_video, # Audio input
|
||||||
|
'-c:v', 'copy', # Copy video stream
|
||||||
|
'-c:a', 'copy', # Copy audio stream
|
||||||
|
'-map', '0:v:0', # Map video from first input
|
||||||
|
'-map', '1:a:0', # Map audio from second input
|
||||||
|
'-shortest', # Match duration to shortest stream
|
||||||
|
final_output
|
||||||
|
]
|
||||||
|
|
||||||
|
logger.info("Copying audio from original video...")
|
||||||
|
|
||||||
|
result = subprocess.run(cmd, capture_output=True, text=True)
|
||||||
|
|
||||||
|
if result.returncode != 0:
|
||||||
|
logger.error(f"FFmpeg audio copy failed: {result.stderr}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
logger.info(f"Successfully added audio to final video: {final_output}")
|
||||||
|
return True
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error copying audio: {e}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
def assemble_final_video(self, segments_dir: str, original_video: str,
|
||||||
|
output_path: str, bitrate: str = "50M") -> bool:
|
||||||
|
"""
|
||||||
|
Complete pipeline to assemble final video with audio.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
segments_dir: Directory containing processed segments
|
||||||
|
original_video: Path to original video (for audio)
|
||||||
|
output_path: Path for final output video
|
||||||
|
bitrate: Output video bitrate
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
True if successful
|
||||||
|
"""
|
||||||
|
logger.info("Starting final video assembly...")
|
||||||
|
|
||||||
|
# Step 1: Concatenate segments
|
||||||
|
temp_concat_path = os.path.join(os.path.dirname(output_path), "temp_concat.mp4")
|
||||||
|
|
||||||
|
if not self.concatenate_segments(segments_dir, temp_concat_path, bitrate):
|
||||||
|
logger.error("Failed to concatenate segments")
|
||||||
|
return False
|
||||||
|
|
||||||
|
# Step 2: Add audio from original
|
||||||
|
if self.preserve_audio and file_exists(original_video):
|
||||||
|
success = self.copy_audio_from_original(original_video, temp_concat_path, output_path)
|
||||||
|
|
||||||
|
# Clean up temp file
|
||||||
|
try:
|
||||||
|
os.remove(temp_concat_path)
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
|
||||||
|
return success
|
||||||
|
else:
|
||||||
|
# No audio to add, just rename temp file
|
||||||
|
import shutil
|
||||||
|
try:
|
||||||
|
shutil.move(temp_concat_path, output_path)
|
||||||
|
logger.info(f"Final video saved to: {output_path}")
|
||||||
|
return True
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error moving final video: {e}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
def verify_segment_completeness(self, segments_dir: str) -> tuple[bool, List[int]]:
|
||||||
|
"""
|
||||||
|
Verify all segments have been processed.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
segments_dir: Directory containing segments
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tuple of (all_complete, missing_segments)
|
||||||
|
"""
|
||||||
|
segments = get_segments_directories(segments_dir)
|
||||||
|
missing_segments = []
|
||||||
|
|
||||||
|
for i, segment in enumerate(segments):
|
||||||
|
segment_dir = os.path.join(segments_dir, segment)
|
||||||
|
if self.output_mode == "alpha_channel":
|
||||||
|
output_video = os.path.join(segment_dir, f"output_{i}.mov")
|
||||||
|
else:
|
||||||
|
output_video = os.path.join(segment_dir, f"output_{i}.mp4")
|
||||||
|
|
||||||
|
if not file_exists(output_video):
|
||||||
|
missing_segments.append(i)
|
||||||
|
|
||||||
|
all_complete = len(missing_segments) == 0
|
||||||
|
|
||||||
|
if all_complete:
|
||||||
|
logger.info(f"All {len(segments)} segments have been processed")
|
||||||
|
else:
|
||||||
|
logger.warning(f"Missing output for segments: {missing_segments}")
|
||||||
|
|
||||||
|
return all_complete, missing_segments
|
||||||
@@ -44,6 +44,14 @@ class VideoSplitter:
|
|||||||
segments_dir = os.path.join(output_dir, f"{video_name}_segments")
|
segments_dir = os.path.join(output_dir, f"{video_name}_segments")
|
||||||
ensure_directory(segments_dir)
|
ensure_directory(segments_dir)
|
||||||
|
|
||||||
|
# Check for completion marker to avoid re-splitting
|
||||||
|
completion_marker = os.path.join(segments_dir, ".splitting_done")
|
||||||
|
if os.path.exists(completion_marker):
|
||||||
|
logger.info(f"Video already split, skipping splitting process. Found completion marker: {completion_marker}")
|
||||||
|
segment_dirs = [d for d in os.listdir(segments_dir) if os.path.isdir(os.path.join(segments_dir, d)) and d.startswith("segment_")]
|
||||||
|
segment_dirs.sort(key=lambda x: int(x.split("_")[1]))
|
||||||
|
return segments_dir, segment_dirs
|
||||||
|
|
||||||
logger.info(f"Splitting video {input_video} into {self.segment_duration}s segments")
|
logger.info(f"Splitting video {input_video} into {self.segment_duration}s segments")
|
||||||
|
|
||||||
# Split video using ffmpeg
|
# Split video using ffmpeg
|
||||||
@@ -83,6 +91,11 @@ class VideoSplitter:
|
|||||||
# Create file list for later concatenation
|
# Create file list for later concatenation
|
||||||
self._create_file_list(segments_dir, segment_dirs)
|
self._create_file_list(segments_dir, segment_dirs)
|
||||||
|
|
||||||
|
# Create completion marker
|
||||||
|
completion_marker = os.path.join(segments_dir, ".splitting_done")
|
||||||
|
with open(completion_marker, 'w') as f:
|
||||||
|
f.write("Video splitting completed successfully.")
|
||||||
|
|
||||||
logger.info(f"Successfully split video into {len(segment_dirs)} segments")
|
logger.info(f"Successfully split video into {len(segment_dirs)} segments")
|
||||||
return segments_dir, segment_dirs
|
return segments_dir, segment_dirs
|
||||||
|
|
||||||
|
|||||||
@@ -61,26 +61,36 @@ class YOLODetector:
|
|||||||
logger.error(f"Failed to load YOLO model: {e}")
|
logger.error(f"Failed to load YOLO model: {e}")
|
||||||
raise
|
raise
|
||||||
|
|
||||||
def detect_humans_in_frame(self, frame: np.ndarray) -> List[Dict[str, Any]]:
|
def detect_humans_in_frame(self, frame: np.ndarray, confidence_override: Optional[float] = None,
|
||||||
|
validate_with_detection: bool = False) -> List[Dict[str, Any]]:
|
||||||
"""
|
"""
|
||||||
Detect humans in a single frame using YOLO.
|
Detect humans in a single frame using YOLO.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
frame: Input frame (BGR format from OpenCV)
|
frame: Input frame (BGR format from OpenCV)
|
||||||
|
confidence_override: Optional confidence to use instead of the default
|
||||||
|
validate_with_detection: If True and in segmentation mode, validate masks against detection bboxes
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
List of human detection dictionaries with bbox, confidence, and optionally masks
|
List of human detection dictionaries with bbox, confidence, and optionally masks
|
||||||
"""
|
"""
|
||||||
# Run YOLO detection/segmentation
|
# Run YOLO detection/segmentation
|
||||||
results = self.model(frame, conf=self.confidence_threshold, verbose=False)
|
confidence = confidence_override if confidence_override is not None else self.confidence_threshold
|
||||||
|
results = self.model(frame, conf=confidence, verbose=False)
|
||||||
|
|
||||||
human_detections = []
|
human_detections = []
|
||||||
|
|
||||||
# Process results
|
# Process results
|
||||||
for result in results:
|
for result_idx, result in enumerate(results):
|
||||||
boxes = result.boxes
|
boxes = result.boxes
|
||||||
masks = result.masks if hasattr(result, 'masks') and result.masks is not None else None
|
masks = result.masks if hasattr(result, 'masks') and result.masks is not None else None
|
||||||
|
|
||||||
|
logger.debug(f"YOLO Result {result_idx}: boxes={boxes is not None}, masks={masks is not None}")
|
||||||
|
if boxes is not None:
|
||||||
|
logger.debug(f" Found {len(boxes)} total boxes")
|
||||||
|
if masks is not None:
|
||||||
|
logger.debug(f" Found {len(masks.data)} total masks")
|
||||||
|
|
||||||
if boxes is not None:
|
if boxes is not None:
|
||||||
for i, box in enumerate(boxes):
|
for i, box in enumerate(boxes):
|
||||||
# Get class ID
|
# Get class ID
|
||||||
@@ -101,18 +111,30 @@ class YOLODetector:
|
|||||||
|
|
||||||
# Extract mask if available (segmentation mode)
|
# Extract mask if available (segmentation mode)
|
||||||
if masks is not None and i < len(masks.data):
|
if masks is not None and i < len(masks.data):
|
||||||
mask_data = masks.data[i].cpu().numpy() # Get mask for this detection
|
# Resize the raw mask to match the input frame dimensions
|
||||||
|
raw_mask = masks.data[i].cpu().numpy()
|
||||||
|
resized_mask = cv2.resize(raw_mask, (frame.shape[1], frame.shape[0]), interpolation=cv2.INTER_NEAREST)
|
||||||
|
|
||||||
|
mask_area = np.sum(resized_mask > 0.5)
|
||||||
detection['has_mask'] = True
|
detection['has_mask'] = True
|
||||||
detection['mask'] = mask_data
|
detection['mask'] = resized_mask
|
||||||
logger.debug(f"YOLO Segmentation: Detected human with mask - conf={conf:.2f}, mask_shape={mask_data.shape}")
|
logger.info(f"YOLO Segmentation: Human {len(human_detections)} - conf={conf:.3f}, raw_mask_shape={raw_mask.shape}, frame_shape={frame.shape}, resized_mask_shape={resized_mask.shape}, mask_area={mask_area}px")
|
||||||
else:
|
else:
|
||||||
logger.debug(f"YOLO Detection: Detected human with bbox - conf={conf:.2f}, bbox={coords}")
|
logger.debug(f"YOLO Detection: Human {len(human_detections)} - conf={conf:.3f}, bbox={coords} (no mask)")
|
||||||
|
|
||||||
human_detections.append(detection)
|
human_detections.append(detection)
|
||||||
|
else:
|
||||||
|
logger.debug(f"YOLO: Skipping non-human detection (class {cls})")
|
||||||
|
|
||||||
if self.supports_segmentation:
|
if self.supports_segmentation:
|
||||||
masks_found = sum(1 for d in human_detections if d['has_mask'])
|
masks_found = sum(1 for d in human_detections if d['has_mask'])
|
||||||
logger.info(f"YOLO Segmentation: Found {len(human_detections)} humans, {masks_found} with masks")
|
logger.info(f"YOLO Segmentation: Found {len(human_detections)} humans, {masks_found} with masks")
|
||||||
|
|
||||||
|
# Optional validation with detection model
|
||||||
|
if validate_with_detection and masks_found > 0:
|
||||||
|
logger.info("Validating segmentation masks with detection model...")
|
||||||
|
validated_detections = self._validate_masks_with_detection(frame, human_detections, confidence_override)
|
||||||
|
return validated_detections
|
||||||
else:
|
else:
|
||||||
logger.debug(f"YOLO Detection: Found {len(human_detections)} humans with bounding boxes")
|
logger.debug(f"YOLO Detection: Found {len(human_detections)} humans with bounding boxes")
|
||||||
|
|
||||||
@@ -733,3 +755,803 @@ class YOLODetector:
|
|||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Error creating debug frame: {e}")
|
logger.error(f"Error creating debug frame: {e}")
|
||||||
return False
|
return False
|
||||||
|
|
||||||
|
def detect_humans_in_single_eye(self, frame: np.ndarray, eye_side: str) -> List[Dict[str, Any]]:
|
||||||
|
"""
|
||||||
|
Detect humans in a single eye frame (left or right).
|
||||||
|
|
||||||
|
Args:
|
||||||
|
frame: Input eye frame (BGR format)
|
||||||
|
eye_side: 'left' or 'right' eye
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of human detection dictionaries for the single eye
|
||||||
|
"""
|
||||||
|
logger.info(f"Running YOLO detection on {eye_side} eye frame")
|
||||||
|
|
||||||
|
# Run standard detection on the eye frame
|
||||||
|
detections = self.detect_humans_in_frame(frame)
|
||||||
|
|
||||||
|
logger.info(f"YOLO {eye_side.upper()} Eye: Found {len(detections)} human detections")
|
||||||
|
|
||||||
|
for i, detection in enumerate(detections):
|
||||||
|
bbox = detection['bbox']
|
||||||
|
conf = detection['confidence']
|
||||||
|
has_mask = detection.get('has_mask', False)
|
||||||
|
logger.debug(f"YOLO {eye_side.upper()} Eye Detection {i+1}: bbox={bbox}, conf={conf:.3f}, has_mask={has_mask}")
|
||||||
|
|
||||||
|
return detections
|
||||||
|
|
||||||
|
def convert_eye_detections_to_sam2_prompts(self, detections: List[Dict[str, Any]],
|
||||||
|
eye_side: str) -> List[Dict[str, Any]]:
|
||||||
|
"""
|
||||||
|
Convert single eye detections to SAM2 prompts (always uses obj_id=1 for single eye processing).
|
||||||
|
|
||||||
|
Args:
|
||||||
|
detections: List of YOLO detection results for single eye
|
||||||
|
eye_side: 'left' or 'right' eye
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of SAM2 prompt dictionaries with obj_id=1 for single eye processing
|
||||||
|
"""
|
||||||
|
if not detections:
|
||||||
|
logger.warning(f"No detections provided for {eye_side} eye SAM2 prompt conversion")
|
||||||
|
return []
|
||||||
|
|
||||||
|
logger.info(f"Converting {len(detections)} {eye_side} eye detections to SAM2 prompts")
|
||||||
|
|
||||||
|
prompts = []
|
||||||
|
|
||||||
|
# For single eye processing, always use obj_id=1 and take the best detection
|
||||||
|
best_detection = max(detections, key=lambda x: x['confidence'])
|
||||||
|
|
||||||
|
prompts.append({
|
||||||
|
'obj_id': 1, # Always use obj_id=1 for single eye processing
|
||||||
|
'bbox': best_detection['bbox'].copy(),
|
||||||
|
'confidence': best_detection['confidence']
|
||||||
|
})
|
||||||
|
|
||||||
|
logger.info(f"{eye_side.upper()} Eye: Converted best detection (conf={best_detection['confidence']:.3f}) to SAM2 Object 1")
|
||||||
|
|
||||||
|
return prompts
|
||||||
|
|
||||||
|
def has_any_detections(self, detections_list: List[List[Dict[str, Any]]]) -> bool:
|
||||||
|
"""
|
||||||
|
Check if any detections exist in a list of detection lists.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
detections_list: List of detection lists (e.g., [left_detections, right_detections])
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
True if any detections are found
|
||||||
|
"""
|
||||||
|
for detections in detections_list:
|
||||||
|
if detections:
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
def split_detections_by_eye(self, detections: List[Dict[str, Any]], frame_width: int) -> Tuple[List[Dict[str, Any]], List[Dict[str, Any]]]:
|
||||||
|
"""
|
||||||
|
Split VR180 detections into left and right eye detections with coordinate conversion.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
detections: List of full-frame VR180 detections
|
||||||
|
frame_width: Width of the full VR180 frame
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tuple of (left_eye_detections, right_eye_detections) with converted coordinates
|
||||||
|
"""
|
||||||
|
half_width = frame_width // 2
|
||||||
|
left_detections = []
|
||||||
|
right_detections = []
|
||||||
|
|
||||||
|
logger.info(f"Splitting {len(detections)} VR180 detections by eye (frame_width={frame_width}, half_width={half_width})")
|
||||||
|
|
||||||
|
for i, detection in enumerate(detections):
|
||||||
|
bbox = detection['bbox']
|
||||||
|
center_x = (bbox[0] + bbox[2]) / 2
|
||||||
|
|
||||||
|
logger.info(f"Detection {i}: bbox={bbox}, center_x={center_x:.1f}")
|
||||||
|
|
||||||
|
# Create a copy with converted coordinates
|
||||||
|
converted_detection = detection.copy()
|
||||||
|
converted_bbox = bbox.copy()
|
||||||
|
|
||||||
|
if center_x < half_width:
|
||||||
|
# Left eye detection - coordinates remain the same
|
||||||
|
# For segmentation mode, we also need to crop the mask to the left eye
|
||||||
|
if detection.get('has_mask', False) and 'mask' in detection:
|
||||||
|
original_mask = detection['mask']
|
||||||
|
# Crop mask to left half (keep original coordinates for now, will be handled in eye processing)
|
||||||
|
converted_detection['mask'] = original_mask
|
||||||
|
logger.info(f"Detection {i}: LEFT eye mask shape: {original_mask.shape}")
|
||||||
|
|
||||||
|
left_detections.append(converted_detection)
|
||||||
|
logger.info(f"Detection {i}: Assigned to LEFT eye, center_x={center_x:.1f} < {half_width}, bbox={bbox}")
|
||||||
|
else:
|
||||||
|
# Right eye detection - shift coordinates to start from 0
|
||||||
|
original_bbox = converted_bbox.copy()
|
||||||
|
converted_bbox[0] -= half_width # x1
|
||||||
|
converted_bbox[2] -= half_width # x2
|
||||||
|
|
||||||
|
# Ensure coordinates are within bounds
|
||||||
|
converted_bbox[0] = max(0, converted_bbox[0])
|
||||||
|
converted_bbox[2] = max(0, min(converted_bbox[2], half_width))
|
||||||
|
|
||||||
|
converted_detection['bbox'] = converted_bbox
|
||||||
|
|
||||||
|
# For segmentation mode, we also need to crop the mask to the right eye
|
||||||
|
if detection.get('has_mask', False) and 'mask' in detection:
|
||||||
|
original_mask = detection['mask']
|
||||||
|
# Crop mask to right half and shift coordinates
|
||||||
|
# Note: This is a simplified approach - the mask coordinates need to be handled properly
|
||||||
|
converted_detection['mask'] = original_mask # Will be properly handled in eye processing
|
||||||
|
logger.info(f"Detection {i}: RIGHT eye mask shape: {original_mask.shape}")
|
||||||
|
|
||||||
|
right_detections.append(converted_detection)
|
||||||
|
|
||||||
|
logger.info(f"Detection {i}: Assigned to RIGHT eye, center_x={center_x:.1f} >= {half_width}, original_bbox={original_bbox}, converted_bbox={converted_bbox}")
|
||||||
|
|
||||||
|
logger.info(f"Split result: {len(left_detections)} left eye, {len(right_detections)} right eye detections")
|
||||||
|
|
||||||
|
return left_detections, right_detections
|
||||||
|
|
||||||
|
def save_eye_debug_frames(self, left_frame: np.ndarray, right_frame: np.ndarray,
|
||||||
|
left_detections: List[Dict[str, Any]], right_detections: List[Dict[str, Any]],
|
||||||
|
left_output_path: str, right_output_path: str) -> Tuple[bool, bool]:
|
||||||
|
"""
|
||||||
|
Save debug frames for both left and right eye detections.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
left_frame: Left eye frame
|
||||||
|
right_frame: Right eye frame
|
||||||
|
left_detections: Left eye detections
|
||||||
|
right_detections: Right eye detections
|
||||||
|
left_output_path: Output path for left eye debug frame
|
||||||
|
right_output_path: Output path for right eye debug frame
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tuple of (left_success, right_success)
|
||||||
|
"""
|
||||||
|
logger.info(f"Saving eye-specific debug frames")
|
||||||
|
|
||||||
|
# Save left eye debug frame (eye-specific version)
|
||||||
|
left_success = self._save_single_eye_debug_frame(
|
||||||
|
left_frame, left_detections, left_output_path, "LEFT"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Save right eye debug frame (eye-specific version)
|
||||||
|
right_success = self._save_single_eye_debug_frame(
|
||||||
|
right_frame, right_detections, right_output_path, "RIGHT"
|
||||||
|
)
|
||||||
|
|
||||||
|
if left_success:
|
||||||
|
logger.info(f"Saved left eye debug frame: {left_output_path}")
|
||||||
|
if right_success:
|
||||||
|
logger.info(f"Saved right eye debug frame: {right_output_path}")
|
||||||
|
|
||||||
|
return left_success, right_success
|
||||||
|
|
||||||
|
def _save_single_eye_debug_frame(self, frame: np.ndarray, detections: List[Dict[str, Any]],
|
||||||
|
output_path: str, eye_side: str) -> bool:
|
||||||
|
"""
|
||||||
|
Save a debug frame for a single eye with eye-specific visualizations.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
frame: Single eye frame (BGR format from OpenCV)
|
||||||
|
detections: List of detection dictionaries for this eye
|
||||||
|
output_path: Path to save the debug image
|
||||||
|
eye_side: "LEFT" or "RIGHT"
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
True if saved successfully
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
debug_frame = frame.copy()
|
||||||
|
|
||||||
|
# Draw masks or bounding boxes for each detection
|
||||||
|
for i, detection in enumerate(detections):
|
||||||
|
bbox = detection['bbox']
|
||||||
|
confidence = detection['confidence']
|
||||||
|
has_mask = detection.get('has_mask', False)
|
||||||
|
|
||||||
|
# Extract coordinates
|
||||||
|
x1, y1, x2, y2 = map(int, bbox)
|
||||||
|
|
||||||
|
# Choose color based on confidence (green for high, yellow for medium, red for low)
|
||||||
|
if confidence >= 0.8:
|
||||||
|
color = (0, 255, 0) # Green
|
||||||
|
elif confidence >= 0.6:
|
||||||
|
color = (0, 255, 255) # Yellow
|
||||||
|
else:
|
||||||
|
color = (0, 0, 255) # Red
|
||||||
|
|
||||||
|
if has_mask and 'mask' in detection:
|
||||||
|
# Draw segmentation mask
|
||||||
|
mask = detection['mask']
|
||||||
|
|
||||||
|
# Resize mask to match frame if needed
|
||||||
|
if mask.shape != debug_frame.shape[:2]:
|
||||||
|
mask = cv2.resize(mask.astype(np.float32), (debug_frame.shape[1], debug_frame.shape[0]), interpolation=cv2.INTER_NEAREST)
|
||||||
|
mask = mask > 0.5
|
||||||
|
|
||||||
|
mask = mask.astype(bool)
|
||||||
|
|
||||||
|
# Apply colored overlay with transparency
|
||||||
|
overlay = debug_frame.copy()
|
||||||
|
overlay[mask] = color
|
||||||
|
cv2.addWeighted(overlay, 0.3, debug_frame, 0.7, 0, debug_frame)
|
||||||
|
|
||||||
|
# Draw mask outline
|
||||||
|
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
||||||
|
cv2.drawContours(debug_frame, contours, -1, color, 2)
|
||||||
|
|
||||||
|
# Prepare label text for segmentation
|
||||||
|
label = f"Person {i+1}: {confidence:.2f} (MASK)"
|
||||||
|
else:
|
||||||
|
# Draw bounding box (detection mode or no mask available)
|
||||||
|
cv2.rectangle(debug_frame, (x1, y1), (x2, y2), color, 2)
|
||||||
|
|
||||||
|
# Prepare label text for detection
|
||||||
|
label = f"Person {i+1}: {confidence:.2f} (BBOX)"
|
||||||
|
|
||||||
|
label_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)[0]
|
||||||
|
|
||||||
|
# Draw label background
|
||||||
|
cv2.rectangle(debug_frame,
|
||||||
|
(x1, y1 - label_size[1] - 10),
|
||||||
|
(x1 + label_size[0], y1),
|
||||||
|
color, -1)
|
||||||
|
|
||||||
|
# Draw label text
|
||||||
|
cv2.putText(debug_frame, label,
|
||||||
|
(x1, y1 - 5),
|
||||||
|
cv2.FONT_HERSHEY_SIMPLEX, 0.6,
|
||||||
|
(255, 255, 255), 2)
|
||||||
|
|
||||||
|
# Add title specific to this eye
|
||||||
|
frame_height, frame_width = debug_frame.shape[:2]
|
||||||
|
title = f"{eye_side} EYE: {len(detections)} detections"
|
||||||
|
cv2.putText(debug_frame, title, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 255, 255), 2)
|
||||||
|
|
||||||
|
# Add mode information
|
||||||
|
mode_text = f"YOLO Mode: {self.mode.upper()}"
|
||||||
|
masks_available = sum(1 for d in detections if d.get('has_mask', False))
|
||||||
|
|
||||||
|
if self.supports_segmentation and masks_available > 0:
|
||||||
|
summary = f"{len(detections)} detections → {masks_available} MASKS"
|
||||||
|
else:
|
||||||
|
summary = f"{len(detections)} detections → BOUNDING BOXES"
|
||||||
|
|
||||||
|
cv2.putText(debug_frame, mode_text,
|
||||||
|
(10, 60),
|
||||||
|
cv2.FONT_HERSHEY_SIMPLEX, 0.8,
|
||||||
|
(0, 255, 255), 2) # Yellow for mode
|
||||||
|
cv2.putText(debug_frame, summary,
|
||||||
|
(10, 90),
|
||||||
|
cv2.FONT_HERSHEY_SIMPLEX, 0.8,
|
||||||
|
(255, 255, 255), 2)
|
||||||
|
|
||||||
|
# Add frame dimensions info
|
||||||
|
dims_info = f"Frame: {frame_width}x{frame_height}"
|
||||||
|
cv2.putText(debug_frame, dims_info,
|
||||||
|
(10, 120),
|
||||||
|
cv2.FONT_HERSHEY_SIMPLEX, 0.6,
|
||||||
|
(255, 255, 255), 2)
|
||||||
|
|
||||||
|
# Save debug frame
|
||||||
|
success = cv2.imwrite(output_path, debug_frame)
|
||||||
|
if success:
|
||||||
|
logger.info(f"Saved {eye_side} eye debug frame to {output_path}")
|
||||||
|
else:
|
||||||
|
logger.error(f"Failed to save {eye_side} eye debug frame to {output_path}")
|
||||||
|
|
||||||
|
return success
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error creating {eye_side} eye debug frame: {e}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
def _calculate_iou(self, mask1: np.ndarray, mask2: np.ndarray) -> float:
|
||||||
|
"""Calculate Intersection over Union for two masks of the same size."""
|
||||||
|
if mask1.shape != mask2.shape:
|
||||||
|
return 0.0
|
||||||
|
|
||||||
|
intersection = np.logical_and(mask1, mask2).sum()
|
||||||
|
union = np.logical_or(mask1, mask2).sum()
|
||||||
|
|
||||||
|
return intersection / union if union > 0 else 0.0
|
||||||
|
|
||||||
|
def _calculate_stereo_similarity(self, left_mask: np.ndarray, right_mask: np.ndarray,
|
||||||
|
left_bbox: np.ndarray, right_bbox: np.ndarray,
|
||||||
|
left_idx: int = -1, right_idx: int = -1) -> float:
|
||||||
|
"""
|
||||||
|
Calculate stereo similarity for VR180 masks using spatial and size features.
|
||||||
|
For VR180, left and right eye views won't overlap much, so we use other metrics.
|
||||||
|
"""
|
||||||
|
logger.info(f" Starting similarity calculation L{left_idx} vs R{right_idx}")
|
||||||
|
logger.info(f" Left mask: shape={left_mask.shape}, dtype={left_mask.dtype}, min={left_mask.min()}, max={left_mask.max()}")
|
||||||
|
logger.info(f" Right mask: shape={right_mask.shape}, dtype={right_mask.dtype}, min={right_mask.min()}, max={right_mask.max()}")
|
||||||
|
logger.info(f" Left bbox: {left_bbox}")
|
||||||
|
logger.info(f" Right bbox: {right_bbox}")
|
||||||
|
if left_mask.shape != right_mask.shape:
|
||||||
|
logger.info(f" L{left_idx} vs R{right_idx}: Shape mismatch - {left_mask.shape} vs {right_mask.shape} - attempting to resize")
|
||||||
|
|
||||||
|
# Try to resize the smaller mask to match the larger one
|
||||||
|
if left_mask.size < right_mask.size:
|
||||||
|
left_mask = cv2.resize(left_mask.astype(np.float32), (right_mask.shape[1], right_mask.shape[0]), interpolation=cv2.INTER_NEAREST)
|
||||||
|
left_mask = left_mask > 0.5
|
||||||
|
logger.info(f" Resized left mask to {left_mask.shape}")
|
||||||
|
else:
|
||||||
|
right_mask = cv2.resize(right_mask.astype(np.float32), (left_mask.shape[1], left_mask.shape[0]), interpolation=cv2.INTER_NEAREST)
|
||||||
|
right_mask = right_mask > 0.5
|
||||||
|
logger.info(f" Resized right mask to {right_mask.shape}")
|
||||||
|
|
||||||
|
if left_mask.shape != right_mask.shape:
|
||||||
|
logger.warning(f" L{left_idx} vs R{right_idx}: Still shape mismatch after resize - {left_mask.shape} vs {right_mask.shape}")
|
||||||
|
return 0.0
|
||||||
|
|
||||||
|
# 1. Size similarity (area ratio)
|
||||||
|
left_area = np.sum(left_mask)
|
||||||
|
right_area = np.sum(right_mask)
|
||||||
|
|
||||||
|
if left_area == 0 or right_area == 0:
|
||||||
|
logger.debug(f" L{left_idx} vs R{right_idx}: Zero area - left={left_area}, right={right_area}")
|
||||||
|
return 0.0
|
||||||
|
|
||||||
|
area_ratio = min(left_area, right_area) / max(left_area, right_area)
|
||||||
|
|
||||||
|
# 2. Vertical position similarity (y-coordinates should be similar)
|
||||||
|
left_center_y = (left_bbox[1] + left_bbox[3]) / 2
|
||||||
|
right_center_y = (right_bbox[1] + right_bbox[3]) / 2
|
||||||
|
|
||||||
|
height = left_mask.shape[0]
|
||||||
|
y_diff = abs(left_center_y - right_center_y) / height
|
||||||
|
y_similarity = max(0, 1.0 - y_diff * 2) # Penalize vertical misalignment
|
||||||
|
|
||||||
|
# 3. Height similarity (bounding box heights should be similar)
|
||||||
|
left_height = left_bbox[3] - left_bbox[1]
|
||||||
|
right_height = right_bbox[3] - right_bbox[1]
|
||||||
|
|
||||||
|
if left_height == 0 or right_height == 0:
|
||||||
|
height_ratio = 0.0
|
||||||
|
else:
|
||||||
|
height_ratio = min(left_height, right_height) / max(left_height, right_height)
|
||||||
|
|
||||||
|
# 4. Aspect ratio similarity
|
||||||
|
left_width = left_bbox[2] - left_bbox[0]
|
||||||
|
right_width = right_bbox[2] - right_bbox[0]
|
||||||
|
|
||||||
|
if left_width == 0 or right_width == 0 or left_height == 0 or right_height == 0:
|
||||||
|
aspect_similarity = 0.0
|
||||||
|
else:
|
||||||
|
left_aspect = left_width / left_height
|
||||||
|
right_aspect = right_width / right_height
|
||||||
|
aspect_diff = abs(left_aspect - right_aspect) / max(left_aspect, right_aspect)
|
||||||
|
aspect_similarity = max(0, 1.0 - aspect_diff)
|
||||||
|
|
||||||
|
# Combine metrics with weights
|
||||||
|
similarity = (
|
||||||
|
area_ratio * 0.3 + # 30% weight on size similarity
|
||||||
|
y_similarity * 0.4 + # 40% weight on vertical alignment
|
||||||
|
height_ratio * 0.2 + # 20% weight on height similarity
|
||||||
|
aspect_similarity * 0.1 # 10% weight on aspect ratio
|
||||||
|
)
|
||||||
|
|
||||||
|
# Detailed logging for each comparison
|
||||||
|
logger.info(f" L{left_idx} vs R{right_idx}: area_ratio={area_ratio:.3f} (L={left_area}px, R={right_area}px), "
|
||||||
|
f"y_sim={y_similarity:.3f} (L_y={left_center_y:.1f}, R_y={right_center_y:.1f}, diff={y_diff:.3f}), "
|
||||||
|
f"height_ratio={height_ratio:.3f} (L_h={left_height:.1f}, R_h={right_height:.1f}), "
|
||||||
|
f"aspect_sim={aspect_similarity:.3f} (L_asp={left_aspect:.2f}, R_asp={right_aspect:.2f}), "
|
||||||
|
f"FINAL_SIMILARITY={similarity:.3f}")
|
||||||
|
|
||||||
|
return similarity
|
||||||
|
|
||||||
|
def _find_matching_mask_pairs(self, left_masks: List[Dict[str, Any]], right_masks: List[Dict[str, Any]],
|
||||||
|
similarity_threshold: float) -> Tuple[List[Dict[str, Any]], List[Dict[str, Any]], List[Dict[str, Any]]]:
|
||||||
|
"""Find the best matching pairs of masks between left and right eyes using stereo similarity."""
|
||||||
|
|
||||||
|
logger.info(f"Starting stereo mask matching with {len(left_masks)} left masks and {len(right_masks)} right masks.")
|
||||||
|
|
||||||
|
if not left_masks or not right_masks:
|
||||||
|
return [], left_masks, right_masks
|
||||||
|
|
||||||
|
# 1. Calculate all similarity scores for every possible pair
|
||||||
|
possible_pairs = []
|
||||||
|
logger.info("--- Calculating all possible stereo similarity pairs ---")
|
||||||
|
|
||||||
|
# First, log details about each mask
|
||||||
|
logger.info(f"LEFT EYE MASKS ({len(left_masks)} total):")
|
||||||
|
for i, left_detection in enumerate(left_masks):
|
||||||
|
bbox = left_detection['bbox']
|
||||||
|
mask_area = np.sum(left_detection['mask'])
|
||||||
|
conf = left_detection['confidence']
|
||||||
|
logger.info(f" L{i}: bbox=[{bbox[0]:.1f},{bbox[1]:.1f},{bbox[2]:.1f},{bbox[3]:.1f}], area={mask_area}px, conf={conf:.3f}")
|
||||||
|
|
||||||
|
logger.info(f"RIGHT EYE MASKS ({len(right_masks)} total):")
|
||||||
|
for j, right_detection in enumerate(right_masks):
|
||||||
|
bbox = right_detection['bbox']
|
||||||
|
mask_area = np.sum(right_detection['mask'])
|
||||||
|
conf = right_detection['confidence']
|
||||||
|
logger.info(f" R{j}: bbox=[{bbox[0]:.1f},{bbox[1]:.1f},{bbox[2]:.1f},{bbox[3]:.1f}], area={mask_area}px, conf={conf:.3f}")
|
||||||
|
|
||||||
|
logger.info("--- Stereo Similarity Calculations ---")
|
||||||
|
for i, left_detection in enumerate(left_masks):
|
||||||
|
for j, right_detection in enumerate(right_masks):
|
||||||
|
try:
|
||||||
|
# Use stereo similarity instead of IOU for VR180
|
||||||
|
similarity = self._calculate_stereo_similarity(
|
||||||
|
left_detection['mask'], right_detection['mask'],
|
||||||
|
left_detection['bbox'], right_detection['bbox'],
|
||||||
|
left_idx=i, right_idx=j
|
||||||
|
)
|
||||||
|
|
||||||
|
if similarity > similarity_threshold:
|
||||||
|
possible_pairs.append({'left_idx': i, 'right_idx': j, 'similarity': similarity})
|
||||||
|
logger.info(f" ✓ L{i} vs R{j}: ABOVE THRESHOLD ({similarity:.4f} > {similarity_threshold:.4f})")
|
||||||
|
else:
|
||||||
|
logger.info(f" ✗ L{i} vs R{j}: BELOW THRESHOLD ({similarity:.4f} <= {similarity_threshold:.4f})")
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f" ERROR L{i} vs R{j}: Exception in similarity calculation: {e}")
|
||||||
|
similarity = 0.0
|
||||||
|
|
||||||
|
# 2. Sort pairs by similarity score in descending order to prioritize the best matches
|
||||||
|
possible_pairs.sort(key=lambda x: x['similarity'], reverse=True)
|
||||||
|
|
||||||
|
logger.debug("--- Sorted similarity pairs above threshold ---")
|
||||||
|
for pair in possible_pairs:
|
||||||
|
logger.debug(f" Pair (L{pair['left_idx']}, R{pair['right_idx']}) - Similarity: {pair['similarity']:.4f}")
|
||||||
|
|
||||||
|
matched_pairs = []
|
||||||
|
matched_left_indices = set()
|
||||||
|
matched_right_indices = set()
|
||||||
|
|
||||||
|
# 3. Iterate through sorted pairs and greedily select the best available ones
|
||||||
|
logger.debug("--- Selecting best pairs ---")
|
||||||
|
for pair in possible_pairs:
|
||||||
|
left_idx, right_idx = pair['left_idx'], pair['right_idx']
|
||||||
|
|
||||||
|
if left_idx not in matched_left_indices and right_idx not in matched_right_indices:
|
||||||
|
logger.info(f" MATCH FOUND: (L{left_idx}, R{right_idx}) with Similarity {pair['similarity']:.4f}")
|
||||||
|
matched_pairs.append({
|
||||||
|
'left_mask': left_masks[left_idx],
|
||||||
|
'right_mask': right_masks[right_idx],
|
||||||
|
'similarity': pair['similarity'] # Changed from 'iou' to 'similarity'
|
||||||
|
})
|
||||||
|
matched_left_indices.add(left_idx)
|
||||||
|
matched_right_indices.add(right_idx)
|
||||||
|
else:
|
||||||
|
logger.debug(f" Skipping pair (L{left_idx}, R{right_idx}) because one mask is already matched.")
|
||||||
|
|
||||||
|
# 4. Identify unmatched (orphan) masks
|
||||||
|
unmatched_left = [mask for i, mask in enumerate(left_masks) if i not in matched_left_indices]
|
||||||
|
unmatched_right = [mask for i, mask in enumerate(right_masks) if i not in matched_right_indices]
|
||||||
|
|
||||||
|
logger.info(f"Matching complete: Found {len(matched_pairs)} pairs. Left orphans: {len(unmatched_left)}, Right orphans: {len(unmatched_right)}.")
|
||||||
|
|
||||||
|
return matched_pairs, unmatched_left, unmatched_right
|
||||||
|
|
||||||
|
def _save_stereo_agreement_debug_frame(self, left_frame: np.ndarray, right_frame: np.ndarray,
|
||||||
|
left_detections: List[Dict[str, Any]], right_detections: List[Dict[str, Any]],
|
||||||
|
matched_pairs: List[Dict[str, Any]], unmatched_left: List[Dict[str, Any]],
|
||||||
|
unmatched_right: List[Dict[str, Any]], output_path: str, title: str):
|
||||||
|
"""Save a debug frame visualizing the stereo mask agreement process."""
|
||||||
|
try:
|
||||||
|
# Create a combined image
|
||||||
|
h, w, _ = left_frame.shape
|
||||||
|
combined_frame = np.hstack((left_frame, right_frame))
|
||||||
|
|
||||||
|
def get_centroid(mask):
|
||||||
|
m = cv2.moments(mask.astype(np.uint8), binaryImage=True)
|
||||||
|
return (int(m["m10"] / m["m00"]), int(m["m01"] / m["m00"])) if m["m00"] != 0 else (0,0)
|
||||||
|
|
||||||
|
def draw_label(frame, text, pos, color):
|
||||||
|
# Draw a black background rectangle
|
||||||
|
cv2.rectangle(frame, (pos[0], pos[1] - 14), (pos[0] + len(text) * 8, pos[1] + 5), (0,0,0), -1)
|
||||||
|
# Draw the text
|
||||||
|
cv2.putText(frame, text, pos, cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 1)
|
||||||
|
|
||||||
|
# --- Draw ALL Masks First (to ensure every mask gets a label) ---
|
||||||
|
logger.info(f"Debug Frame: Drawing {len(left_detections)} left masks and {len(right_detections)} right masks")
|
||||||
|
|
||||||
|
# Draw all left detections first
|
||||||
|
for i, detection in enumerate(left_detections):
|
||||||
|
mask = detection['mask']
|
||||||
|
mask_area = np.sum(mask > 0.5)
|
||||||
|
|
||||||
|
# Skip tiny masks that are likely noise
|
||||||
|
if mask_area < 100: # Less than 100 pixels
|
||||||
|
logger.debug(f"Skipping tiny left mask L{i} with area {mask_area}px")
|
||||||
|
continue
|
||||||
|
|
||||||
|
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
||||||
|
if contours:
|
||||||
|
cv2.drawContours(combined_frame, contours, -1, (0, 0, 255), 2) # Default red for unmatched
|
||||||
|
c = get_centroid(mask)
|
||||||
|
if c[0] > 0 and c[1] > 0: # Valid centroid
|
||||||
|
draw_label(combined_frame, f"L{i}", c, (0, 0, 255))
|
||||||
|
logger.debug(f"Drew left mask L{i} at centroid {c}, area={mask_area}px")
|
||||||
|
|
||||||
|
# Draw all right detections
|
||||||
|
for i, detection in enumerate(right_detections):
|
||||||
|
mask = detection['mask']
|
||||||
|
mask_area = np.sum(mask > 0.5)
|
||||||
|
|
||||||
|
# Skip tiny masks that are likely noise
|
||||||
|
if mask_area < 100: # Less than 100 pixels
|
||||||
|
logger.debug(f"Skipping tiny right mask R{i} with area {mask_area}px")
|
||||||
|
continue
|
||||||
|
|
||||||
|
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
||||||
|
if contours:
|
||||||
|
for cnt in contours:
|
||||||
|
cnt[:, :, 0] += w
|
||||||
|
cv2.drawContours(combined_frame, contours, -1, (0, 0, 255), 2) # Default red for unmatched
|
||||||
|
c_shifted = get_centroid(mask)
|
||||||
|
c = (c_shifted[0] + w, c_shifted[1])
|
||||||
|
if c[0] > w and c[1] > 0: # Valid centroid in right half
|
||||||
|
draw_label(combined_frame, f"R{i}", c, (0, 0, 255))
|
||||||
|
logger.debug(f"Drew right mask R{i} at centroid {c}, area={mask_area}px")
|
||||||
|
|
||||||
|
# --- Now Overdraw Matched Pairs in Green ---
|
||||||
|
for pair in matched_pairs:
|
||||||
|
left_mask = pair['left_mask']['mask']
|
||||||
|
right_mask = pair['right_mask']['mask']
|
||||||
|
|
||||||
|
# Find the indices from the stored pair data (should be available from matching)
|
||||||
|
left_idx = None
|
||||||
|
right_idx = None
|
||||||
|
|
||||||
|
# Find indices by comparing mask properties
|
||||||
|
for i, det in enumerate(left_detections):
|
||||||
|
if (np.array_equal(det['bbox'], pair['left_mask']['bbox']) and
|
||||||
|
abs(det['confidence'] - pair['left_mask']['confidence']) < 0.001):
|
||||||
|
left_idx = i
|
||||||
|
break
|
||||||
|
|
||||||
|
for i, det in enumerate(right_detections):
|
||||||
|
if (np.array_equal(det['bbox'], pair['right_mask']['bbox']) and
|
||||||
|
abs(det['confidence'] - pair['right_mask']['confidence']) < 0.001):
|
||||||
|
right_idx = i
|
||||||
|
break
|
||||||
|
|
||||||
|
# Draw left mask in green (matched)
|
||||||
|
contours, _ = cv2.findContours(left_mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
||||||
|
if contours:
|
||||||
|
cv2.drawContours(combined_frame, contours, -1, (0, 255, 0), 3) # Thicker green line
|
||||||
|
c1 = get_centroid(left_mask)
|
||||||
|
if c1[0] > 0 and c1[1] > 0:
|
||||||
|
draw_label(combined_frame, f"L{left_idx if left_idx is not None else '?'}", c1, (0, 255, 0))
|
||||||
|
|
||||||
|
# Draw right mask in green (matched)
|
||||||
|
contours, _ = cv2.findContours(right_mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
||||||
|
if contours:
|
||||||
|
for cnt in contours:
|
||||||
|
cnt[:, :, 0] += w
|
||||||
|
cv2.drawContours(combined_frame, contours, -1, (0, 255, 0), 3) # Thicker green line
|
||||||
|
c2_shifted = get_centroid(right_mask)
|
||||||
|
c2 = (c2_shifted[0] + w, c2_shifted[1])
|
||||||
|
if c2[0] > w and c2[1] > 0:
|
||||||
|
draw_label(combined_frame, f"R{right_idx if right_idx is not None else '?'}", c2, (0, 255, 0))
|
||||||
|
|
||||||
|
# Draw line connecting centroids and similarity score
|
||||||
|
cv2.line(combined_frame, c1, c2, (0, 255, 0), 2)
|
||||||
|
similarity_text = f"Sim: {pair.get('similarity', pair.get('iou', 0)):.2f}"
|
||||||
|
cv2.putText(combined_frame, similarity_text, (c1[0] + 10, c1[1] + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
||||||
|
|
||||||
|
# Add title
|
||||||
|
cv2.putText(combined_frame, title, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 255, 255), 2)
|
||||||
|
|
||||||
|
cv2.imwrite(output_path, combined_frame)
|
||||||
|
logger.info(f"Saved stereo agreement debug frame to {output_path}")
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to create stereo agreement debug frame: {e}")
|
||||||
|
|
||||||
|
def detect_and_match_stereo_pairs(self, frame: np.ndarray, confidence_reduction_factor: float,
|
||||||
|
stereo_similarity_threshold: float, segment_info: dict, save_debug_frames: bool) -> List[Dict[str, Any]]:
|
||||||
|
"""The main method to detect and match stereo mask pairs."""
|
||||||
|
frame_height, frame_width, _ = frame.shape
|
||||||
|
half_width = frame_width // 2
|
||||||
|
|
||||||
|
left_eye_frame = frame[:, :half_width]
|
||||||
|
right_eye_frame = frame[:, half_width:half_width*2] # Ensure exact same width
|
||||||
|
|
||||||
|
logger.info(f"VR180 Frame Split: Original={frame.shape}, Left={left_eye_frame.shape}, Right={right_eye_frame.shape}")
|
||||||
|
|
||||||
|
# Initial detection with validation
|
||||||
|
logger.info(f"Running initial stereo detection at {self.confidence_threshold} confidence.")
|
||||||
|
left_detections = self.detect_humans_in_frame(left_eye_frame, validate_with_detection=True)
|
||||||
|
right_detections = self.detect_humans_in_frame(right_eye_frame, validate_with_detection=True)
|
||||||
|
|
||||||
|
# Convert IOU threshold to similarity threshold (IOU 0.5 ≈ similarity 0.3)
|
||||||
|
similarity_threshold = max(0.2, stereo_similarity_threshold * 0.6)
|
||||||
|
matched_pairs, unmatched_left, unmatched_right = self._find_matching_mask_pairs(left_detections, right_detections, similarity_threshold)
|
||||||
|
|
||||||
|
if save_debug_frames:
|
||||||
|
debug_path = os.path.join(segment_info['directory'], "yolo_stereo_agreement_initial.jpg")
|
||||||
|
title = f"Initial Attempt (Conf: {self.confidence_threshold:.2f}) - {len(matched_pairs)} Pairs"
|
||||||
|
self._save_stereo_agreement_debug_frame(left_eye_frame, right_eye_frame, left_detections, right_detections, matched_pairs, unmatched_left, unmatched_right, debug_path, title)
|
||||||
|
|
||||||
|
# Retry with lower confidence if no pairs found
|
||||||
|
if not matched_pairs:
|
||||||
|
new_confidence = self.confidence_threshold * confidence_reduction_factor
|
||||||
|
logger.info(f"No valid pairs found. Reducing confidence to {new_confidence:.2f} and retrying.")
|
||||||
|
|
||||||
|
left_detections = self.detect_humans_in_frame(left_eye_frame, confidence_override=new_confidence, validate_with_detection=True)
|
||||||
|
right_detections = self.detect_humans_in_frame(right_eye_frame, confidence_override=new_confidence, validate_with_detection=True)
|
||||||
|
|
||||||
|
matched_pairs, unmatched_left, unmatched_right = self._find_matching_mask_pairs(left_detections, right_detections, similarity_threshold)
|
||||||
|
|
||||||
|
if save_debug_frames:
|
||||||
|
debug_path = os.path.join(segment_info['directory'], "yolo_stereo_agreement_retry.jpg")
|
||||||
|
title = f"Retry Attempt (Conf: {new_confidence:.2f}) - {len(matched_pairs)} Pairs"
|
||||||
|
self._save_stereo_agreement_debug_frame(left_eye_frame, right_eye_frame, left_detections, right_detections, matched_pairs, unmatched_left, unmatched_right, debug_path, title)
|
||||||
|
|
||||||
|
# Prepare final results - convert to full-frame coordinates and masks
|
||||||
|
final_prompts = []
|
||||||
|
if matched_pairs:
|
||||||
|
logger.info(f"Found {len(matched_pairs)} valid stereo pairs.")
|
||||||
|
for i, pair in enumerate(matched_pairs):
|
||||||
|
# Convert eye-specific coordinates and masks to full-frame
|
||||||
|
left_bbox_full_frame, left_mask_full_frame = self._convert_eye_to_full_frame(
|
||||||
|
pair['left_mask']['bbox'], pair['left_mask']['mask'],
|
||||||
|
'left', frame_width, frame_height
|
||||||
|
)
|
||||||
|
|
||||||
|
right_bbox_full_frame, right_mask_full_frame = self._convert_eye_to_full_frame(
|
||||||
|
pair['right_mask']['bbox'], pair['right_mask']['mask'],
|
||||||
|
'right', frame_width, frame_height
|
||||||
|
)
|
||||||
|
|
||||||
|
logger.info(f"Stereo Pair {i}: Left bbox {pair['left_mask']['bbox']} -> {left_bbox_full_frame}")
|
||||||
|
logger.info(f"Stereo Pair {i}: Right bbox {pair['right_mask']['bbox']} -> {right_bbox_full_frame}")
|
||||||
|
|
||||||
|
# Create prompts for SAM2 with full-frame coordinates and masks
|
||||||
|
final_prompts.append({
|
||||||
|
'obj_id': i * 2 + 1,
|
||||||
|
'bbox': left_bbox_full_frame,
|
||||||
|
'mask': left_mask_full_frame
|
||||||
|
})
|
||||||
|
final_prompts.append({
|
||||||
|
'obj_id': i * 2 + 2,
|
||||||
|
'bbox': right_bbox_full_frame,
|
||||||
|
'mask': right_mask_full_frame
|
||||||
|
})
|
||||||
|
else:
|
||||||
|
logger.warning("No valid stereo pairs found after all attempts.")
|
||||||
|
|
||||||
|
return final_prompts
|
||||||
|
|
||||||
|
def _convert_eye_to_full_frame(self, eye_bbox: np.ndarray, eye_mask: np.ndarray,
|
||||||
|
eye_side: str, full_frame_width: int, full_frame_height: int) -> tuple:
|
||||||
|
"""
|
||||||
|
Convert eye-specific bounding box and mask to full-frame coordinates.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
eye_bbox: Bounding box in eye coordinate system
|
||||||
|
eye_mask: Mask in eye coordinate system
|
||||||
|
eye_side: 'left' or 'right'
|
||||||
|
full_frame_width: Width of the full VR180 frame
|
||||||
|
full_frame_height: Height of the full VR180 frame
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tuple of (full_frame_bbox, full_frame_mask)
|
||||||
|
"""
|
||||||
|
half_width = full_frame_width // 2
|
||||||
|
|
||||||
|
# Convert bounding box coordinates
|
||||||
|
full_frame_bbox = eye_bbox.copy()
|
||||||
|
|
||||||
|
if eye_side == 'right':
|
||||||
|
# Shift right eye coordinates by half_width
|
||||||
|
full_frame_bbox[0] += half_width # x1
|
||||||
|
full_frame_bbox[2] += half_width # x2
|
||||||
|
|
||||||
|
# Create full-frame mask
|
||||||
|
full_frame_mask = np.zeros((full_frame_height, full_frame_width), dtype=eye_mask.dtype)
|
||||||
|
|
||||||
|
if eye_side == 'left':
|
||||||
|
# Place left eye mask in left half
|
||||||
|
eye_height, eye_width = eye_mask.shape
|
||||||
|
target_height = min(eye_height, full_frame_height)
|
||||||
|
target_width = min(eye_width, half_width)
|
||||||
|
full_frame_mask[:target_height, :target_width] = eye_mask[:target_height, :target_width]
|
||||||
|
else: # right
|
||||||
|
# Place right eye mask in right half
|
||||||
|
eye_height, eye_width = eye_mask.shape
|
||||||
|
target_height = min(eye_height, full_frame_height)
|
||||||
|
target_width = min(eye_width, half_width)
|
||||||
|
full_frame_mask[:target_height, half_width:half_width+target_width] = eye_mask[:target_height, :target_width]
|
||||||
|
|
||||||
|
logger.debug(f"Converted {eye_side} eye: bbox {eye_bbox} -> {full_frame_bbox}, "
|
||||||
|
f"mask {eye_mask.shape} -> {full_frame_mask.shape}, "
|
||||||
|
f"mask_pixels: {np.sum(eye_mask > 0.5)} -> {np.sum(full_frame_mask > 0.5)}")
|
||||||
|
|
||||||
|
return full_frame_bbox, full_frame_mask
|
||||||
|
|
||||||
|
def _validate_masks_with_detection(self, frame: np.ndarray, segmentation_detections: List[Dict[str, Any]],
|
||||||
|
confidence_override: Optional[float] = None) -> List[Dict[str, Any]]:
|
||||||
|
"""
|
||||||
|
Validate segmentation masks by checking if they overlap with detection bounding boxes.
|
||||||
|
This helps filter out spurious mask regions that aren't actually humans.
|
||||||
|
"""
|
||||||
|
if not hasattr(self, '_detection_model'):
|
||||||
|
# Load detection model for validation
|
||||||
|
try:
|
||||||
|
detection_model_path = self.model_path.replace('-seg.pt', '.pt') # Try to find detection version
|
||||||
|
if not os.path.exists(detection_model_path):
|
||||||
|
detection_model_path = "yolo11l.pt" # Fallback to default
|
||||||
|
|
||||||
|
logger.info(f"Loading detection model for validation: {detection_model_path}")
|
||||||
|
self._detection_model = YOLO(detection_model_path)
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Could not load detection model for validation: {e}")
|
||||||
|
return segmentation_detections
|
||||||
|
|
||||||
|
# Run detection model
|
||||||
|
confidence = confidence_override if confidence_override is not None else self.confidence_threshold
|
||||||
|
detection_results = self._detection_model(frame, conf=confidence, verbose=False)
|
||||||
|
|
||||||
|
# Extract detection bounding boxes
|
||||||
|
detection_bboxes = []
|
||||||
|
for result in detection_results:
|
||||||
|
if result.boxes is not None:
|
||||||
|
for box in result.boxes:
|
||||||
|
cls = int(box.cls.cpu().numpy()[0])
|
||||||
|
if cls == self.human_class_id:
|
||||||
|
coords = box.xyxy[0].cpu().numpy()
|
||||||
|
conf = float(box.conf.cpu().numpy()[0])
|
||||||
|
detection_bboxes.append({'bbox': coords, 'confidence': conf})
|
||||||
|
|
||||||
|
logger.info(f"Validation: Found {len(detection_bboxes)} detection bboxes vs {len(segmentation_detections)} segmentation masks")
|
||||||
|
|
||||||
|
# Validate each segmentation mask against detection bboxes
|
||||||
|
validated_detections = []
|
||||||
|
for seg_det in segmentation_detections:
|
||||||
|
if not seg_det['has_mask']:
|
||||||
|
validated_detections.append(seg_det)
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Check if this mask overlaps significantly with any detection bbox
|
||||||
|
mask = seg_det['mask']
|
||||||
|
seg_bbox = seg_det['bbox']
|
||||||
|
|
||||||
|
best_overlap = 0.0
|
||||||
|
best_detection = None
|
||||||
|
|
||||||
|
for det_bbox_info in detection_bboxes:
|
||||||
|
det_bbox = det_bbox_info['bbox']
|
||||||
|
overlap = self._calculate_bbox_overlap(seg_bbox, det_bbox)
|
||||||
|
if overlap > best_overlap:
|
||||||
|
best_overlap = overlap
|
||||||
|
best_detection = det_bbox_info
|
||||||
|
|
||||||
|
if best_overlap > 0.3: # 30% overlap threshold
|
||||||
|
logger.info(f"Validation: Segmentation mask validated (overlap={best_overlap:.3f} with detection conf={best_detection['confidence']:.3f})")
|
||||||
|
validated_detections.append(seg_det)
|
||||||
|
else:
|
||||||
|
mask_area = np.sum(mask > 0.5)
|
||||||
|
logger.warning(f"Validation: Rejecting segmentation mask with low overlap ({best_overlap:.3f}) - area={mask_area}px")
|
||||||
|
|
||||||
|
logger.info(f"Validation: Kept {len(validated_detections)}/{len(segmentation_detections)} segmentation masks")
|
||||||
|
return validated_detections
|
||||||
|
|
||||||
|
def _calculate_bbox_overlap(self, bbox1: np.ndarray, bbox2: np.ndarray) -> float:
|
||||||
|
"""Calculate the overlap ratio between two bounding boxes."""
|
||||||
|
# Calculate intersection
|
||||||
|
x1 = max(bbox1[0], bbox2[0])
|
||||||
|
y1 = max(bbox1[1], bbox2[1])
|
||||||
|
x2 = min(bbox1[2], bbox2[2])
|
||||||
|
y2 = min(bbox1[3], bbox2[3])
|
||||||
|
|
||||||
|
if x2 <= x1 or y2 <= y1:
|
||||||
|
return 0.0
|
||||||
|
|
||||||
|
intersection = (x2 - x1) * (y2 - y1)
|
||||||
|
|
||||||
|
# Calculate areas
|
||||||
|
area1 = (bbox1[2] - bbox1[0]) * (bbox1[3] - bbox1[1])
|
||||||
|
area2 = (bbox2[2] - bbox2[0]) * (bbox2[3] - bbox2[1])
|
||||||
|
|
||||||
|
# Return intersection over smaller area (more lenient than IoU)
|
||||||
|
return intersection / min(area1, area2) if min(area1, area2) > 0 else 0.0
|
||||||
|
|||||||
579
main.py
579
main.py
@@ -188,8 +188,295 @@ def resolve_detect_segments(detect_segments, total_segments: int) -> List[int]:
|
|||||||
logger.warning(f"Invalid detect_segments format: {detect_segments}. Using all segments.")
|
logger.warning(f"Invalid detect_segments format: {detect_segments}. Using all segments.")
|
||||||
return list(range(total_segments))
|
return list(range(total_segments))
|
||||||
|
|
||||||
def main():
|
def process_segment_with_separate_eyes(segment_info, detector, sam2_processor, mask_processor, config,
|
||||||
"""Main processing pipeline."""
|
previous_left_masks=None, previous_right_masks=None):
|
||||||
|
"""
|
||||||
|
Process a single segment using separate eye processing mode.
|
||||||
|
Split video first, then run YOLO independently on each eye.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
segment_info: Segment information dictionary
|
||||||
|
detector: YOLO detector instance
|
||||||
|
sam2_processor: SAM2 processor with eye processing enabled
|
||||||
|
mask_processor: Mask processor instance
|
||||||
|
config: Configuration loader instance
|
||||||
|
previous_left_masks: Previous masks for left eye
|
||||||
|
previous_right_masks: Previous masks for right eye
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tuple of (success, left_masks, right_masks)
|
||||||
|
"""
|
||||||
|
segment_idx = segment_info['index']
|
||||||
|
logger.info(f"VR180 Separate Eyes: Processing segment {segment_idx} (video-split approach)")
|
||||||
|
|
||||||
|
# Get video properties
|
||||||
|
cap = cv2.VideoCapture(segment_info['video_file'])
|
||||||
|
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||||
|
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||||
|
cap.release()
|
||||||
|
|
||||||
|
full_frame_shape = (frame_height, frame_width)
|
||||||
|
|
||||||
|
# Step 1: Split the segment video into left and right eye videos
|
||||||
|
left_eye_video = os.path.join(segment_info['directory'], "left_eye.mp4")
|
||||||
|
right_eye_video = os.path.join(segment_info['directory'], "right_eye.mp4")
|
||||||
|
|
||||||
|
logger.info(f"VR180 Separate Eyes: Splitting segment video into eye videos")
|
||||||
|
success = sam2_processor.eye_processor.split_video_into_eyes(
|
||||||
|
segment_info['video_file'],
|
||||||
|
left_eye_video,
|
||||||
|
right_eye_video,
|
||||||
|
scale=config.get_inference_scale()
|
||||||
|
)
|
||||||
|
|
||||||
|
if not success:
|
||||||
|
logger.error(f"VR180 Separate Eyes: Failed to split video for segment {segment_idx}")
|
||||||
|
return False, None, None
|
||||||
|
|
||||||
|
# Check if both eye videos were created
|
||||||
|
if not os.path.exists(left_eye_video) or not os.path.exists(right_eye_video):
|
||||||
|
logger.error(f"VR180 Separate Eyes: Eye video files not created for segment {segment_idx}")
|
||||||
|
return False, None, None
|
||||||
|
|
||||||
|
logger.info(f"VR180 Separate Eyes: Created eye videos - left: {left_eye_video}, right: {right_eye_video}")
|
||||||
|
|
||||||
|
# Step 2: Run YOLO independently on each eye video
|
||||||
|
left_detections = detector.detect_humans_in_video_first_frame(
|
||||||
|
left_eye_video, scale=1.0 # Already scaled during video splitting
|
||||||
|
)
|
||||||
|
|
||||||
|
right_detections = detector.detect_humans_in_video_first_frame(
|
||||||
|
right_eye_video, scale=1.0 # Already scaled during video splitting
|
||||||
|
)
|
||||||
|
|
||||||
|
logger.info(f"VR180 Separate Eyes: YOLO detections - left: {len(left_detections)}, right: {len(right_detections)}")
|
||||||
|
|
||||||
|
# Check if we have YOLO segmentation masks
|
||||||
|
has_yolo_masks = False
|
||||||
|
if detector.supports_segmentation:
|
||||||
|
has_yolo_masks = any(d.get('has_mask', False) for d in (left_detections + right_detections))
|
||||||
|
|
||||||
|
if has_yolo_masks:
|
||||||
|
logger.info(f"VR180 Separate Eyes: YOLO segmentation mode - using direct masks instead of bounding boxes")
|
||||||
|
|
||||||
|
# Save eye-specific debug frames if enabled
|
||||||
|
if config.get('advanced.save_yolo_debug_frames', False) and (left_detections or right_detections):
|
||||||
|
try:
|
||||||
|
# Load first frames from each eye video
|
||||||
|
left_cap = cv2.VideoCapture(left_eye_video)
|
||||||
|
ret_left, left_frame = left_cap.read()
|
||||||
|
left_cap.release()
|
||||||
|
|
||||||
|
right_cap = cv2.VideoCapture(right_eye_video)
|
||||||
|
ret_right, right_frame = right_cap.read()
|
||||||
|
right_cap.release()
|
||||||
|
|
||||||
|
if ret_left and ret_right:
|
||||||
|
# Save eye-specific debug frames
|
||||||
|
left_debug_path = os.path.join(segment_info['directory'], "left_eye_debug.jpg")
|
||||||
|
right_debug_path = os.path.join(segment_info['directory'], "right_eye_debug.jpg")
|
||||||
|
|
||||||
|
detector.save_eye_debug_frames(
|
||||||
|
left_frame, right_frame,
|
||||||
|
left_detections, right_detections,
|
||||||
|
left_debug_path, right_debug_path
|
||||||
|
)
|
||||||
|
|
||||||
|
logger.info(f"VR180 Separate Eyes: Saved eye-specific debug frames for segment {segment_idx}")
|
||||||
|
else:
|
||||||
|
logger.warning(f"VR180 Separate Eyes: Could not load eye frames for debug visualization")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"VR180 Separate Eyes: Failed to create eye debug frames: {e}")
|
||||||
|
|
||||||
|
# Step 3: Process left eye if detections exist or we have previous masks
|
||||||
|
left_masks = None
|
||||||
|
if left_detections or previous_left_masks:
|
||||||
|
try:
|
||||||
|
left_prompts = None
|
||||||
|
left_initial_masks = None
|
||||||
|
|
||||||
|
if left_detections:
|
||||||
|
if has_yolo_masks:
|
||||||
|
# YOLO segmentation mode: convert masks to initial masks for SAM2
|
||||||
|
left_initial_masks = {}
|
||||||
|
for i, detection in enumerate(left_detections):
|
||||||
|
if detection.get('has_mask', False):
|
||||||
|
mask = detection['mask']
|
||||||
|
left_initial_masks[1] = mask.astype(bool) # Always use obj_id=1 for single eye
|
||||||
|
logger.info(f"VR180 Separate Eyes: Left eye YOLO mask - shape: {mask.shape}, pixels: {np.sum(mask)}")
|
||||||
|
break # Only take the first/best mask for single eye processing
|
||||||
|
|
||||||
|
if left_initial_masks:
|
||||||
|
logger.info(f"VR180 Separate Eyes: Left eye - using YOLO segmentation masks as initial masks")
|
||||||
|
else:
|
||||||
|
# YOLO detection mode: convert bounding boxes to prompts
|
||||||
|
left_prompts = detector.convert_detections_to_sam2_prompts(left_detections, frame_width // 2)
|
||||||
|
logger.info(f"VR180 Separate Eyes: Left eye - {len(left_prompts)} SAM2 prompts")
|
||||||
|
|
||||||
|
# Create temporary segment info for left eye processing
|
||||||
|
left_segment_info = segment_info.copy()
|
||||||
|
left_segment_info['video_file'] = left_eye_video
|
||||||
|
|
||||||
|
left_masks = sam2_processor.process_single_eye_segment(
|
||||||
|
left_segment_info, 'left', left_prompts,
|
||||||
|
left_initial_masks or previous_left_masks,
|
||||||
|
1.0 # Scale already applied during video splitting
|
||||||
|
)
|
||||||
|
|
||||||
|
if left_masks:
|
||||||
|
logger.info(f"VR180 Separate Eyes: Left eye processed - {len(left_masks)} frame masks")
|
||||||
|
else:
|
||||||
|
logger.warning(f"VR180 Separate Eyes: Left eye processing failed")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"VR180 Separate Eyes: Error processing left eye for segment {segment_idx}: {e}")
|
||||||
|
left_masks = None
|
||||||
|
|
||||||
|
# Step 4: Process right eye if detections exist or we have previous masks
|
||||||
|
right_masks = None
|
||||||
|
if right_detections or previous_right_masks:
|
||||||
|
try:
|
||||||
|
right_prompts = None
|
||||||
|
right_initial_masks = None
|
||||||
|
|
||||||
|
if right_detections:
|
||||||
|
if has_yolo_masks:
|
||||||
|
# YOLO segmentation mode: convert masks to initial masks for SAM2
|
||||||
|
right_initial_masks = {}
|
||||||
|
for i, detection in enumerate(right_detections):
|
||||||
|
if detection.get('has_mask', False):
|
||||||
|
mask = detection['mask']
|
||||||
|
right_initial_masks[1] = mask.astype(bool) # Always use obj_id=1 for single eye
|
||||||
|
logger.info(f"VR180 Separate Eyes: Right eye YOLO mask - shape: {mask.shape}, pixels: {np.sum(mask)}")
|
||||||
|
break # Only take the first/best mask for single eye processing
|
||||||
|
|
||||||
|
if right_initial_masks:
|
||||||
|
logger.info(f"VR180 Separate Eyes: Right eye - using YOLO segmentation masks as initial masks")
|
||||||
|
else:
|
||||||
|
# YOLO detection mode: convert bounding boxes to prompts
|
||||||
|
right_prompts = detector.convert_detections_to_sam2_prompts(right_detections, frame_width // 2)
|
||||||
|
logger.info(f"VR180 Separate Eyes: Right eye - {len(right_prompts)} SAM2 prompts")
|
||||||
|
|
||||||
|
# Create temporary segment info for right eye processing
|
||||||
|
right_segment_info = segment_info.copy()
|
||||||
|
right_segment_info['video_file'] = right_eye_video
|
||||||
|
|
||||||
|
right_masks = sam2_processor.process_single_eye_segment(
|
||||||
|
right_segment_info, 'right', right_prompts,
|
||||||
|
right_initial_masks or previous_right_masks,
|
||||||
|
1.0 # Scale already applied during video splitting
|
||||||
|
)
|
||||||
|
|
||||||
|
if right_masks:
|
||||||
|
logger.info(f"VR180 Separate Eyes: Right eye processed - {len(right_masks)} frame masks")
|
||||||
|
else:
|
||||||
|
logger.warning(f"VR180 Separate Eyes: Right eye processing failed")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"VR180 Separate Eyes: Error processing right eye for segment {segment_idx}: {e}")
|
||||||
|
right_masks = None
|
||||||
|
|
||||||
|
# Step 5: Check if we got any valid masks
|
||||||
|
if not left_masks and not right_masks:
|
||||||
|
logger.warning(f"VR180 Separate Eyes: Neither eye produced valid masks for segment {segment_idx}")
|
||||||
|
|
||||||
|
if config.get('processing.enable_greenscreen_fallback', True):
|
||||||
|
logger.info(f"VR180 Separate Eyes: Using greenscreen fallback for segment {segment_idx}")
|
||||||
|
success = mask_processor.process_greenscreen_only_segment(
|
||||||
|
segment_info,
|
||||||
|
green_color=config.get_green_color(),
|
||||||
|
use_nvenc=config.get_use_nvenc(),
|
||||||
|
bitrate=config.get_output_bitrate()
|
||||||
|
)
|
||||||
|
return success, None, None
|
||||||
|
else:
|
||||||
|
logger.error(f"VR180 Separate Eyes: No masks generated and greenscreen fallback disabled")
|
||||||
|
return False, None, None
|
||||||
|
|
||||||
|
# Step 6: Combine masks back to full frame format
|
||||||
|
try:
|
||||||
|
logger.info(f"VR180 Separate Eyes: Combining eye masks for segment {segment_idx}")
|
||||||
|
combined_masks = sam2_processor.eye_processor.combine_eye_masks(
|
||||||
|
left_masks, right_masks, full_frame_shape
|
||||||
|
)
|
||||||
|
|
||||||
|
if not combined_masks:
|
||||||
|
logger.error(f"VR180 Separate Eyes: Failed to combine eye masks for segment {segment_idx}")
|
||||||
|
return False, left_masks, right_masks
|
||||||
|
|
||||||
|
# Validate combined masks have reasonable content
|
||||||
|
total_mask_pixels = 0
|
||||||
|
for frame_idx, frame_masks in combined_masks.items():
|
||||||
|
for obj_id, mask in frame_masks.items():
|
||||||
|
if mask is not None:
|
||||||
|
total_mask_pixels += np.sum(mask)
|
||||||
|
|
||||||
|
if total_mask_pixels == 0:
|
||||||
|
logger.warning(f"VR180 Separate Eyes: Combined masks are empty for segment {segment_idx}")
|
||||||
|
if config.get('processing.enable_greenscreen_fallback', True):
|
||||||
|
logger.info(f"VR180 Separate Eyes: Using greenscreen fallback due to empty masks")
|
||||||
|
success = mask_processor.process_greenscreen_only_segment(
|
||||||
|
segment_info,
|
||||||
|
green_color=config.get_green_color(),
|
||||||
|
use_nvenc=config.get_use_nvenc(),
|
||||||
|
bitrate=config.get_output_bitrate()
|
||||||
|
)
|
||||||
|
return success, left_masks, right_masks
|
||||||
|
|
||||||
|
logger.info(f"VR180 Separate Eyes: Combined masks contain {total_mask_pixels} total pixels")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"VR180 Separate Eyes: Error combining eye masks for segment {segment_idx}: {e}")
|
||||||
|
# Try greenscreen fallback if mask combination fails
|
||||||
|
if config.get('processing.enable_greenscreen_fallback', True):
|
||||||
|
logger.info(f"VR180 Separate Eyes: Using greenscreen fallback due to mask combination error")
|
||||||
|
success = mask_processor.process_greenscreen_only_segment(
|
||||||
|
segment_info,
|
||||||
|
green_color=config.get_green_color(),
|
||||||
|
use_nvenc=config.get_use_nvenc(),
|
||||||
|
bitrate=config.get_output_bitrate()
|
||||||
|
)
|
||||||
|
return success, left_masks, right_masks
|
||||||
|
else:
|
||||||
|
return False, left_masks, right_masks
|
||||||
|
|
||||||
|
# Step 7: Save combined masks
|
||||||
|
mask_path = os.path.join(segment_info['directory'], "mask.png")
|
||||||
|
sam2_processor.save_final_masks(
|
||||||
|
combined_masks,
|
||||||
|
mask_path,
|
||||||
|
green_color=config.get_green_color(),
|
||||||
|
blue_color=config.get_blue_color()
|
||||||
|
)
|
||||||
|
|
||||||
|
# Step 8: Apply green screen and save output video
|
||||||
|
success = mask_processor.process_segment(
|
||||||
|
segment_info,
|
||||||
|
combined_masks,
|
||||||
|
use_nvenc=config.get_use_nvenc(),
|
||||||
|
bitrate=config.get_output_bitrate()
|
||||||
|
)
|
||||||
|
|
||||||
|
if success:
|
||||||
|
logger.info(f"VR180 Separate Eyes: Successfully processed segment {segment_idx}")
|
||||||
|
else:
|
||||||
|
logger.error(f"VR180 Separate Eyes: Failed to create output video for segment {segment_idx}")
|
||||||
|
|
||||||
|
# Clean up temporary eye video files
|
||||||
|
try:
|
||||||
|
if os.path.exists(left_eye_video):
|
||||||
|
os.remove(left_eye_video)
|
||||||
|
if os.path.exists(right_eye_video):
|
||||||
|
os.remove(right_eye_video)
|
||||||
|
logger.debug(f"VR180 Separate Eyes: Cleaned up temporary eye videos for segment {segment_idx}")
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"VR180 Separate Eyes: Failed to clean up temporary eye videos: {e}")
|
||||||
|
|
||||||
|
return success, left_masks, right_masks
|
||||||
|
|
||||||
|
async def main_async():
|
||||||
|
"""Main processing pipeline with async optimizations."""
|
||||||
args = parse_arguments()
|
args = parse_arguments()
|
||||||
|
|
||||||
try:
|
try:
|
||||||
@@ -275,10 +562,42 @@ def main():
|
|||||||
)
|
)
|
||||||
|
|
||||||
logger.info("Step 3: Initializing SAM2 processor")
|
logger.info("Step 3: Initializing SAM2 processor")
|
||||||
|
|
||||||
|
# Check if separate eye processing is enabled
|
||||||
|
separate_eye_processing = config.get('processing.separate_eye_processing', False)
|
||||||
|
eye_overlap_pixels = config.get('processing.eye_overlap_pixels', 0)
|
||||||
|
enable_greenscreen_fallback = config.get('processing.enable_greenscreen_fallback', True)
|
||||||
|
|
||||||
|
# Initialize async preprocessor if enabled
|
||||||
|
async_preprocessor = None
|
||||||
|
if config.get('advanced.enable_background_lowres_generation', False):
|
||||||
|
from core.async_lowres_preprocessor import AsyncLowResPreprocessor
|
||||||
|
|
||||||
|
max_concurrent = config.get('advanced.max_concurrent_lowres', 3)
|
||||||
|
segments_ahead = config.get('advanced.lowres_segments_ahead', 3)
|
||||||
|
use_ffmpeg = config.get('advanced.use_ffmpeg_lowres', True)
|
||||||
|
|
||||||
|
async_preprocessor = AsyncLowResPreprocessor(
|
||||||
|
max_concurrent=max_concurrent,
|
||||||
|
segments_ahead=segments_ahead,
|
||||||
|
use_ffmpeg=use_ffmpeg
|
||||||
|
)
|
||||||
|
logger.info(f"Async low-res preprocessing: ENABLED (max_concurrent={max_concurrent}, segments_ahead={segments_ahead})")
|
||||||
|
else:
|
||||||
|
logger.info("Async low-res preprocessing: DISABLED")
|
||||||
|
|
||||||
|
if separate_eye_processing:
|
||||||
|
logger.info("VR180 Separate Eye Processing: ENABLED")
|
||||||
|
logger.info(f"Eye overlap pixels: {eye_overlap_pixels}")
|
||||||
|
logger.info(f"Greenscreen fallback: {enable_greenscreen_fallback}")
|
||||||
|
|
||||||
sam2_processor = SAM2Processor(
|
sam2_processor = SAM2Processor(
|
||||||
checkpoint_path=config.get_sam2_checkpoint(),
|
checkpoint_path=config.get_sam2_checkpoint(),
|
||||||
config_path=config.get_sam2_config(),
|
config_path=config.get_sam2_config(),
|
||||||
vos_optimized=config.get('models.sam2_vos_optimized', False)
|
vos_optimized=config.get('models.sam2_vos_optimized', False),
|
||||||
|
separate_eye_processing=separate_eye_processing,
|
||||||
|
eye_overlap_pixels=eye_overlap_pixels,
|
||||||
|
async_preprocessor=async_preprocessor
|
||||||
)
|
)
|
||||||
|
|
||||||
# Initialize mask processor with quality enhancements
|
# Initialize mask processor with quality enhancements
|
||||||
@@ -293,11 +612,34 @@ def main():
|
|||||||
logger.info("Step 4: Processing segments sequentially")
|
logger.info("Step 4: Processing segments sequentially")
|
||||||
total_humans_detected = 0
|
total_humans_detected = 0
|
||||||
|
|
||||||
|
# Start background low-res video preprocessing if enabled
|
||||||
|
if async_preprocessor:
|
||||||
|
logger.info("Starting background low-res video preprocessing")
|
||||||
|
async_preprocessor.start_background_preparation(
|
||||||
|
segments_info,
|
||||||
|
config.get_inference_scale(),
|
||||||
|
separate_eye_processing,
|
||||||
|
current_segment=0
|
||||||
|
)
|
||||||
|
|
||||||
|
# Initialize previous masks for separate eye processing
|
||||||
|
previous_left_masks = None
|
||||||
|
previous_right_masks = None
|
||||||
|
|
||||||
for i, segment_info in enumerate(segments_info):
|
for i, segment_info in enumerate(segments_info):
|
||||||
segment_idx = segment_info['index']
|
segment_idx = segment_info['index']
|
||||||
|
|
||||||
logger.info(f"Processing segment {segment_idx}/{len(segments_info)-1}")
|
logger.info(f"Processing segment {segment_idx}/{len(segments_info)-1}")
|
||||||
|
|
||||||
|
# Start background preparation for upcoming segments
|
||||||
|
if async_preprocessor and i < len(segments_info) - 1:
|
||||||
|
async_preprocessor.start_background_preparation(
|
||||||
|
segments_info,
|
||||||
|
config.get_inference_scale(),
|
||||||
|
separate_eye_processing,
|
||||||
|
current_segment=i
|
||||||
|
)
|
||||||
|
|
||||||
# Reset temporal history for new segment
|
# Reset temporal history for new segment
|
||||||
mask_processor.reset_temporal_history()
|
mask_processor.reset_temporal_history()
|
||||||
|
|
||||||
@@ -307,6 +649,25 @@ def main():
|
|||||||
logger.info(f"Segment {segment_idx} already processed, skipping")
|
logger.info(f"Segment {segment_idx} already processed, skipping")
|
||||||
continue
|
continue
|
||||||
|
|
||||||
|
# Branch based on processing mode
|
||||||
|
if separate_eye_processing:
|
||||||
|
# Use separate eye processing mode
|
||||||
|
success, left_masks, right_masks = process_segment_with_separate_eyes(
|
||||||
|
segment_info, detector, sam2_processor, mask_processor, config,
|
||||||
|
previous_left_masks, previous_right_masks
|
||||||
|
)
|
||||||
|
|
||||||
|
# Update previous masks for next segment
|
||||||
|
previous_left_masks = left_masks
|
||||||
|
previous_right_masks = right_masks
|
||||||
|
|
||||||
|
if success:
|
||||||
|
logger.info(f"Successfully processed segment {segment_idx} with separate eye processing")
|
||||||
|
else:
|
||||||
|
logger.error(f"Failed to process segment {segment_idx} with separate eye processing")
|
||||||
|
|
||||||
|
continue # Skip the original processing logic
|
||||||
|
|
||||||
# Determine if we should use YOLO detections or previous masks
|
# Determine if we should use YOLO detections or previous masks
|
||||||
use_detections = segment_idx in detect_segments
|
use_detections = segment_idx in detect_segments
|
||||||
|
|
||||||
@@ -320,138 +681,41 @@ def main():
|
|||||||
previous_masks = None
|
previous_masks = None
|
||||||
|
|
||||||
if use_detections:
|
if use_detections:
|
||||||
# Run YOLO detection on current segment
|
# Run YOLO stereo detection and matching on current segment
|
||||||
logger.info(f"Running YOLO detection on segment {segment_idx}")
|
logger.info(f"Running stereo pair detection on segment {segment_idx}")
|
||||||
detection_file = os.path.join(segment_info['directory'], "yolo_detections")
|
|
||||||
|
|
||||||
# Check if detection already exists
|
# Load the first frame for detection
|
||||||
if os.path.exists(detection_file):
|
cap = cv2.VideoCapture(segment_info['video_file'])
|
||||||
logger.info(f"Loading existing YOLO detections for segment {segment_idx}")
|
ret, frame = cap.read()
|
||||||
detections = detector.load_detections_from_file(detection_file)
|
cap.release()
|
||||||
else:
|
|
||||||
# Run YOLO detection on first frame
|
|
||||||
detections = detector.detect_humans_in_video_first_frame(
|
|
||||||
segment_info['video_file'],
|
|
||||||
scale=config.get_inference_scale()
|
|
||||||
)
|
|
||||||
# Save detections for future runs
|
|
||||||
detector.save_detections_to_file(detections, detection_file)
|
|
||||||
|
|
||||||
if detections:
|
if not ret:
|
||||||
total_humans_detected += len(detections)
|
logger.error(f"Could not read first frame of segment {segment_idx}")
|
||||||
logger.info(f"Found {len(detections)} humans in segment {segment_idx}")
|
continue
|
||||||
|
|
||||||
# Get frame width from video
|
# Scale frame if needed
|
||||||
cap = cv2.VideoCapture(segment_info['video_file'])
|
if config.get_inference_scale() != 1.0:
|
||||||
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
frame = cv2.resize(frame, None, fx=config.get_inference_scale(), fy=config.get_inference_scale(), interpolation=cv2.INTER_LINEAR)
|
||||||
cap.release()
|
|
||||||
|
|
||||||
yolo_prompts = detector.convert_detections_to_sam2_prompts(
|
yolo_prompts = detector.detect_and_match_stereo_pairs(
|
||||||
detections, frame_width
|
frame,
|
||||||
)
|
config.get_confidence_reduction_factor(),
|
||||||
|
config.get_stereo_iou_threshold(),
|
||||||
|
segment_info,
|
||||||
|
config.get('advanced.save_yolo_debug_frames', True)
|
||||||
|
)
|
||||||
|
|
||||||
# If no right eye detections found, run debug analysis with lower confidence
|
if not yolo_prompts:
|
||||||
half_frame_width = frame_width // 2
|
logger.warning(f"No valid stereo pairs found for segment {segment_idx}. Attempting to use previous segment's mask.")
|
||||||
right_eye_detections = [d for d in detections if (d['bbox'][0] + d['bbox'][2]) / 2 >= half_frame_width]
|
if segment_idx > 0:
|
||||||
|
prev_segment_dir = segments_info[segment_idx - 1]['directory']
|
||||||
if len(right_eye_detections) == 0 and config.get('advanced.save_yolo_debug_frames', False):
|
previous_masks = sam2_processor.load_previous_segment_mask(prev_segment_dir)
|
||||||
logger.info(f"VR180 Debug: No right eye detections found, running lower confidence analysis...")
|
if previous_masks:
|
||||||
|
logger.info(f"Using masks from segment {segment_idx - 1} as fallback.")
|
||||||
# Load first frame for debug analysis
|
|
||||||
cap = cv2.VideoCapture(segment_info['video_file'])
|
|
||||||
ret, debug_frame = cap.read()
|
|
||||||
cap.release()
|
|
||||||
|
|
||||||
if ret:
|
|
||||||
# Scale frame to match detection scale
|
|
||||||
if config.get_inference_scale() != 1.0:
|
|
||||||
scale = config.get_inference_scale()
|
|
||||||
debug_frame = cv2.resize(debug_frame, None, fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR)
|
|
||||||
|
|
||||||
# Run debug detection with lower confidence
|
|
||||||
debug_detections = detector.debug_detect_with_lower_confidence(debug_frame, debug_confidence=0.3)
|
|
||||||
|
|
||||||
# Analyze where these lower confidence detections are
|
|
||||||
debug_right_eye = [d for d in debug_detections if (d['bbox'][0] + d['bbox'][2]) / 2 >= half_frame_width]
|
|
||||||
|
|
||||||
if len(debug_right_eye) > 0:
|
|
||||||
logger.warning(f"VR180 Debug: Found {len(debug_right_eye)} right eye detections with lower confidence!")
|
|
||||||
for i, det in enumerate(debug_right_eye):
|
|
||||||
logger.warning(f"VR180 Debug: Right eye detection {i+1}: conf={det['confidence']:.3f}, bbox={det['bbox']}")
|
|
||||||
logger.warning(f"VR180 Debug: Consider lowering yolo_confidence from {config.get_yolo_confidence()} to 0.3-0.4")
|
|
||||||
else:
|
|
||||||
logger.info(f"VR180 Debug: No right eye detections found even with confidence 0.3")
|
|
||||||
logger.info(f"VR180 Debug: This confirms person is not visible in right eye view")
|
|
||||||
|
|
||||||
logger.info(f"Pipeline Debug: Segment {segment_idx} - Generated {len(yolo_prompts)} SAM2 prompts from {len(detections)} YOLO detections")
|
|
||||||
|
|
||||||
# Save debug frame with detections visualized (if enabled)
|
|
||||||
if config.get('advanced.save_yolo_debug_frames', False):
|
|
||||||
debug_frame_path = os.path.join(segment_info['directory'], "yolo_debug.jpg")
|
|
||||||
|
|
||||||
# Load first frame for debug visualization
|
|
||||||
cap = cv2.VideoCapture(segment_info['video_file'])
|
|
||||||
ret, debug_frame = cap.read()
|
|
||||||
cap.release()
|
|
||||||
|
|
||||||
if ret:
|
|
||||||
# Scale frame to match detection scale
|
|
||||||
if config.get_inference_scale() != 1.0:
|
|
||||||
scale = config.get_inference_scale()
|
|
||||||
debug_frame = cv2.resize(debug_frame, None, fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR)
|
|
||||||
|
|
||||||
detector.save_debug_frame_with_detections(debug_frame, detections, debug_frame_path, yolo_prompts)
|
|
||||||
else:
|
else:
|
||||||
logger.warning(f"Could not load frame for debug visualization in segment {segment_idx}")
|
logger.error(f"Fallback failed: No previous mask found for segment {segment_idx}.")
|
||||||
|
else:
|
||||||
# Check if we have YOLO masks for debug visualization
|
logger.error("Cannot use fallback for the first segment.")
|
||||||
has_yolo_masks = False
|
|
||||||
if detections and detector.supports_segmentation:
|
|
||||||
has_yolo_masks = any(d.get('has_mask', False) for d in detections)
|
|
||||||
|
|
||||||
# Generate first frame masks debug (SAM2 or YOLO)
|
|
||||||
first_frame_debug_path = os.path.join(segment_info['directory'], "first_frame_detection.jpg")
|
|
||||||
|
|
||||||
if has_yolo_masks:
|
|
||||||
logger.info(f"Pipeline Debug: Generating YOLO first frame masks for segment {segment_idx}")
|
|
||||||
# Create YOLO mask debug visualization
|
|
||||||
create_yolo_mask_debug_frame(detections, segment_info['video_file'], first_frame_debug_path, config.get_inference_scale())
|
|
||||||
else:
|
|
||||||
logger.info(f"Pipeline Debug: Generating SAM2 first frame masks for segment {segment_idx}")
|
|
||||||
sam2_processor.generate_first_frame_debug_masks(
|
|
||||||
segment_info['video_file'],
|
|
||||||
yolo_prompts,
|
|
||||||
first_frame_debug_path,
|
|
||||||
config.get_inference_scale()
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
logger.warning(f"No humans detected in segment {segment_idx}")
|
|
||||||
|
|
||||||
# Save debug frame even when no detections (if enabled)
|
|
||||||
if config.get('advanced.save_yolo_debug_frames', False):
|
|
||||||
debug_frame_path = os.path.join(segment_info['directory'], "yolo_debug_no_detections.jpg")
|
|
||||||
|
|
||||||
# Load first frame for debug visualization
|
|
||||||
cap = cv2.VideoCapture(segment_info['video_file'])
|
|
||||||
ret, debug_frame = cap.read()
|
|
||||||
cap.release()
|
|
||||||
|
|
||||||
if ret:
|
|
||||||
# Scale frame to match detection scale
|
|
||||||
if config.get_inference_scale() != 1.0:
|
|
||||||
scale = config.get_inference_scale()
|
|
||||||
debug_frame = cv2.resize(debug_frame, None, fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR)
|
|
||||||
|
|
||||||
# Add "No detections" text overlay
|
|
||||||
cv2.putText(debug_frame, "YOLO: No humans detected",
|
|
||||||
(10, 30),
|
|
||||||
cv2.FONT_HERSHEY_SIMPLEX, 1.0,
|
|
||||||
(0, 0, 255), 2) # Red text
|
|
||||||
|
|
||||||
cv2.imwrite(debug_frame_path, debug_frame)
|
|
||||||
logger.info(f"Saved no-detection debug frame to {debug_frame_path}")
|
|
||||||
else:
|
|
||||||
logger.warning(f"Could not load frame for no-detection debug visualization in segment {segment_idx}")
|
|
||||||
elif segment_idx > 0:
|
elif segment_idx > 0:
|
||||||
# Try to load previous segment mask
|
# Try to load previous segment mask
|
||||||
for j in range(segment_idx - 1, -1, -1):
|
for j in range(segment_idx - 1, -1, -1):
|
||||||
@@ -465,43 +729,20 @@ def main():
|
|||||||
logger.error(f"No prompts or previous masks available for segment {segment_idx}")
|
logger.error(f"No prompts or previous masks available for segment {segment_idx}")
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# Check if we have YOLO masks and can skip SAM2 (recheck in case detections were loaded from file)
|
# Check if we have YOLO masks from the stereo pair matching and can use them as initial masks for SAM2
|
||||||
if not 'has_yolo_masks' in locals():
|
if yolo_prompts and detector.supports_segmentation:
|
||||||
has_yolo_masks = False
|
logger.info(f"Pipeline Debug: YOLO segmentation provided matched stereo masks - using as SAM2 initial masks.")
|
||||||
if detections and detector.supports_segmentation:
|
|
||||||
has_yolo_masks = any(d.get('has_mask', False) for d in detections)
|
|
||||||
|
|
||||||
if has_yolo_masks:
|
# Convert the prompts (which contain masks) into the initial_masks format for SAM2
|
||||||
logger.info(f"Pipeline Debug: YOLO segmentation provided masks - using as SAM2 initial masks for segment {segment_idx}")
|
initial_masks = {prompt['obj_id']: prompt['mask'] for prompt in yolo_prompts if 'mask' in prompt}
|
||||||
|
|
||||||
# Convert YOLO masks to initial masks for SAM2
|
if initial_masks:
|
||||||
cap = cv2.VideoCapture(segment_info['video_file'])
|
# We are providing initial masks, so we should not provide bbox prompts
|
||||||
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
previous_masks = initial_masks
|
||||||
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
yolo_prompts = None
|
||||||
cap.release()
|
logger.info(f"Pipeline Debug: Using {len(previous_masks)} YOLO masks as SAM2 initial masks.")
|
||||||
|
else:
|
||||||
# Convert YOLO masks to the format expected by SAM2 add_previous_masks_to_predictor
|
logger.warning("YOLO segmentation mode is on, but no masks were found in the final prompts.")
|
||||||
yolo_masks_dict = {}
|
|
||||||
for i, detection in enumerate(detections[:2]): # Up to 2 objects
|
|
||||||
if detection.get('has_mask', False):
|
|
||||||
mask = detection['mask']
|
|
||||||
# Resize mask to match inference scale
|
|
||||||
if config.get_inference_scale() != 1.0:
|
|
||||||
scale = config.get_inference_scale()
|
|
||||||
scaled_height = int(frame_height * scale)
|
|
||||||
scaled_width = int(frame_width * scale)
|
|
||||||
mask = cv2.resize(mask.astype(np.float32), (scaled_width, scaled_height), interpolation=cv2.INTER_NEAREST)
|
|
||||||
mask = mask > 0.5
|
|
||||||
|
|
||||||
obj_id = i + 1 # Sequential object IDs
|
|
||||||
yolo_masks_dict[obj_id] = mask.astype(bool)
|
|
||||||
logger.info(f"Pipeline Debug: YOLO mask for Object {obj_id} - shape: {mask.shape}, pixels: {np.sum(mask)}")
|
|
||||||
|
|
||||||
logger.info(f"Pipeline Debug: Using YOLO masks as SAM2 initial masks - {len(yolo_masks_dict)} objects")
|
|
||||||
|
|
||||||
# Use traditional SAM2 pipeline with YOLO masks as initial masks
|
|
||||||
previous_masks = yolo_masks_dict
|
|
||||||
yolo_prompts = None # Don't use bounding box prompts when we have masks
|
|
||||||
|
|
||||||
# Debug what we're passing to SAM2
|
# Debug what we're passing to SAM2
|
||||||
if yolo_prompts:
|
if yolo_prompts:
|
||||||
@@ -689,6 +930,16 @@ def main():
|
|||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Pipeline failed: {e}", exc_info=True)
|
logger.error(f"Pipeline failed: {e}", exc_info=True)
|
||||||
return 1
|
return 1
|
||||||
|
finally:
|
||||||
|
# Cleanup async preprocessor if it was used
|
||||||
|
if async_preprocessor:
|
||||||
|
async_preprocessor.cleanup()
|
||||||
|
logger.debug("Async preprocessor cleanup completed")
|
||||||
|
|
||||||
|
def main():
|
||||||
|
"""Main entry point - wrapper for async main."""
|
||||||
|
import asyncio
|
||||||
|
return asyncio.run(main_async())
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
exit_code = main()
|
exit_code = main()
|
||||||
|
|||||||
198
sbs_spec.md
Normal file
198
sbs_spec.md
Normal file
@@ -0,0 +1,198 @@
|
|||||||
|
# Plan: Separate Left/Right Eye Processing for VR180 SAM2 Pipeline
|
||||||
|
|
||||||
|
## Overview
|
||||||
|
Implement a new processing mode that splits VR180 side-by-side frames into separate left and right halves, processes each eye independently through SAM2, then recombines them into the final output. This should improve tracking accuracy by removing parallax confusion between eyes.
|
||||||
|
|
||||||
|
## Key Changes Required
|
||||||
|
|
||||||
|
### 1. Configuration Updates
|
||||||
|
**File: `config.yaml`**
|
||||||
|
- Add new configuration option: `processing.separate_eye_processing: false` (default off for backward compatibility)
|
||||||
|
- Add related options:
|
||||||
|
- `processing.enable_greenscreen_fallback: true` (render full green if no humans detected)
|
||||||
|
- `processing.eye_overlap_pixels: 0` (optional overlap for blending)
|
||||||
|
|
||||||
|
### 2. Core SAM2 Processor Enhancements
|
||||||
|
**File: `core/sam2_processor.py`**
|
||||||
|
|
||||||
|
#### New Methods:
|
||||||
|
- `split_frame_into_eyes(frame) -> (left_frame, right_frame)`
|
||||||
|
- `split_video_into_eyes(video_path, left_output, right_output, scale)`
|
||||||
|
- `process_single_eye_segment(segment_info, eye_side, yolo_prompts, previous_masks, inference_scale)`
|
||||||
|
- `combine_eye_masks(left_masks, right_masks, full_frame_shape) -> combined_masks`
|
||||||
|
- `create_greenscreen_segment(segment_info, duration_seconds) -> bool`
|
||||||
|
|
||||||
|
#### Modified Methods:
|
||||||
|
- `process_single_segment()` - Add branch for separate eye processing mode
|
||||||
|
- New processing flow:
|
||||||
|
1. Check if separate_eye_processing enabled
|
||||||
|
2. If enabled: split segment video into left/right eye videos
|
||||||
|
3. Process each eye independently with SAM2
|
||||||
|
4. Combine masks back to full frame format
|
||||||
|
5. If fallback needed: create full greenscreen segment
|
||||||
|
|
||||||
|
### 3. YOLO Detector Enhancements
|
||||||
|
**File: `core/yolo_detector.py`**
|
||||||
|
|
||||||
|
#### New Methods:
|
||||||
|
- `detect_humans_in_single_eye(frame, eye_side) -> List[Dict]`
|
||||||
|
- `convert_eye_detections_to_sam2_prompts(detections, eye_side) -> List[Dict]`
|
||||||
|
- `has_any_detections(detections_list) -> bool`
|
||||||
|
|
||||||
|
#### Modified Methods:
|
||||||
|
- `detect_humans_in_video_first_frame()` - Add eye-specific detection support
|
||||||
|
- Object ID assignment: Always use obj_id=1 for single-eye processing (since each eye is processed independently)
|
||||||
|
|
||||||
|
### 4. Mask Processor Updates
|
||||||
|
**File: `core/mask_processor.py`**
|
||||||
|
|
||||||
|
#### New Methods:
|
||||||
|
- `create_full_greenscreen_frame(frame_shape) -> np.ndarray`
|
||||||
|
- `process_greenscreen_only_segment(segment_info, frame_count) -> bool`
|
||||||
|
|
||||||
|
#### Modified Methods:
|
||||||
|
- `apply_green_mask()` - Handle combined eye masks properly
|
||||||
|
- Add support for full-greenscreen fallback when no humans detected
|
||||||
|
|
||||||
|
### 5. Main Pipeline Integration
|
||||||
|
**File: `main.py`**
|
||||||
|
|
||||||
|
#### Processing Flow Changes:
|
||||||
|
```python
|
||||||
|
# For each segment:
|
||||||
|
if config.get('processing.separate_eye_processing', False):
|
||||||
|
# 1. Run YOLO on full frame to check for ANY human presence
|
||||||
|
full_frame_detections = detector.detect_humans_in_video_first_frame(segment_video)
|
||||||
|
|
||||||
|
if not full_frame_detections:
|
||||||
|
# No humans detected anywhere - create full greenscreen segment
|
||||||
|
success = mask_processor.process_greenscreen_only_segment(segment_info, expected_frame_count)
|
||||||
|
continue
|
||||||
|
|
||||||
|
# 2. Split detections by eye and process separately
|
||||||
|
left_detections = [d for d in full_frame_detections if is_in_left_half(d, frame_width)]
|
||||||
|
right_detections = [d for d in full_frame_detections if is_in_right_half(d, frame_width)]
|
||||||
|
|
||||||
|
# 3. Process left eye (if detections exist)
|
||||||
|
left_masks = None
|
||||||
|
if left_detections:
|
||||||
|
left_eye_prompts = detector.convert_eye_detections_to_sam2_prompts(left_detections, 'left')
|
||||||
|
left_masks = sam2_processor.process_single_eye_segment(segment_info, 'left', left_eye_prompts, previous_left_masks, inference_scale)
|
||||||
|
|
||||||
|
# 4. Process right eye (if detections exist)
|
||||||
|
right_masks = None
|
||||||
|
if right_detections:
|
||||||
|
right_eye_prompts = detector.convert_eye_detections_to_sam2_prompts(right_detections, 'right')
|
||||||
|
right_masks = sam2_processor.process_single_eye_segment(segment_info, 'right', right_eye_prompts, previous_right_masks, inference_scale)
|
||||||
|
|
||||||
|
# 5. Combine masks back to full frame format
|
||||||
|
if left_masks or right_masks:
|
||||||
|
combined_masks = sam2_processor.combine_eye_masks(left_masks, right_masks, full_frame_shape)
|
||||||
|
# Continue with normal mask processing...
|
||||||
|
else:
|
||||||
|
# Neither eye had trackable humans - full greenscreen fallback
|
||||||
|
success = mask_processor.process_greenscreen_only_segment(segment_info, expected_frame_count)
|
||||||
|
|
||||||
|
else:
|
||||||
|
# Original processing mode (current behavior)
|
||||||
|
# ... existing logic unchanged
|
||||||
|
```
|
||||||
|
|
||||||
|
### 6. File Structure Changes
|
||||||
|
|
||||||
|
#### New Files:
|
||||||
|
- `core/eye_processor.py` - Dedicated class for eye-specific operations
|
||||||
|
- `utils/video_utils.py` - Video manipulation utilities (splitting, combining)
|
||||||
|
|
||||||
|
#### Modified Files:
|
||||||
|
- All core processing modules as detailed above
|
||||||
|
- Update logging to distinguish left/right eye processing
|
||||||
|
- Update debug frame generation for eye-specific visualization
|
||||||
|
|
||||||
|
### 7. Debug and Monitoring Enhancements
|
||||||
|
|
||||||
|
#### Debug Outputs:
|
||||||
|
- `left_eye_debug.jpg` - Left eye YOLO detections
|
||||||
|
- `right_eye_debug.jpg` - Right eye YOLO detections
|
||||||
|
- `left_eye_sam2_masks.jpg` - Left eye SAM2 results
|
||||||
|
- `right_eye_sam2_masks.jpg` - Right eye SAM2 results
|
||||||
|
- `combined_masks_debug.jpg` - Final combined result
|
||||||
|
|
||||||
|
#### Logging Enhancements:
|
||||||
|
- Clear distinction between left/right eye processing stages
|
||||||
|
- Performance metrics for each eye processing
|
||||||
|
- Fallback trigger logging when no humans detected
|
||||||
|
|
||||||
|
### 8. Performance Considerations
|
||||||
|
|
||||||
|
#### Optimizations:
|
||||||
|
- **Parallel Processing**: Process left and right eyes simultaneously using threading
|
||||||
|
- **Selective Processing**: Skip SAM2 for eyes with no YOLO detections
|
||||||
|
- **Memory Management**: Clean up intermediate eye videos promptly
|
||||||
|
- **Caching**: Cache split eye videos if processing multiple segments
|
||||||
|
|
||||||
|
#### Resource Usage:
|
||||||
|
- **Memory**: ~2x peak usage during eye processing (temporary)
|
||||||
|
- **Storage**: Temporary left/right eye videos (~1.5x original size)
|
||||||
|
- **Compute**: Potentially faster overall due to smaller frame processing
|
||||||
|
|
||||||
|
### 9. Backward Compatibility
|
||||||
|
|
||||||
|
#### Default Behavior:
|
||||||
|
- `separate_eye_processing: false` by default
|
||||||
|
- Existing configurations work unchanged
|
||||||
|
- All current functionality preserved
|
||||||
|
|
||||||
|
#### Migration Path:
|
||||||
|
- Users can gradually test new mode on problematic segments
|
||||||
|
- Configuration flag allows easy A/B testing
|
||||||
|
- Existing debug outputs remain functional
|
||||||
|
|
||||||
|
### 10. Error Handling and Fallbacks
|
||||||
|
|
||||||
|
#### Robust Error Recovery:
|
||||||
|
- If eye splitting fails → fall back to original processing
|
||||||
|
- If single eye SAM2 fails → use greenscreen for that eye
|
||||||
|
- If both eyes fail → full greenscreen segment
|
||||||
|
- Comprehensive logging of all fallback triggers
|
||||||
|
|
||||||
|
#### Quality Validation:
|
||||||
|
- Verify combined masks have reasonable pixel counts
|
||||||
|
- Check for mask alignment issues between eyes
|
||||||
|
- Validate segment completeness before marking done
|
||||||
|
|
||||||
|
## Implementation Priority
|
||||||
|
|
||||||
|
### Phase 1 (Core Functionality)
|
||||||
|
1. Configuration schema updates
|
||||||
|
2. Basic eye splitting and recombining logic
|
||||||
|
3. Modified SAM2 processor with separate eye support
|
||||||
|
4. Greenscreen fallback implementation
|
||||||
|
|
||||||
|
### Phase 2 (Integration)
|
||||||
|
1. Main pipeline integration with new processing mode
|
||||||
|
2. YOLO detector eye-specific enhancements
|
||||||
|
3. Mask processor updates for combined masks
|
||||||
|
4. Basic error handling and fallbacks
|
||||||
|
|
||||||
|
### Phase 3 (Polish)
|
||||||
|
1. Performance optimizations (parallel processing)
|
||||||
|
2. Enhanced debug outputs and logging
|
||||||
|
3. Comprehensive testing and validation
|
||||||
|
4. Documentation updates
|
||||||
|
|
||||||
|
## Expected Benefits
|
||||||
|
|
||||||
|
### Tracking Improvements:
|
||||||
|
- **Eliminated Parallax Confusion**: SAM2 processes single viewpoint per eye
|
||||||
|
- **Better Object Consistency**: Single object tracking per eye view
|
||||||
|
- **Improved Temporal Coherence**: Less cross-eye interference
|
||||||
|
- **Reduced False Positives**: Eye-specific context for tracking
|
||||||
|
|
||||||
|
### Operational Benefits:
|
||||||
|
- **Graceful Degradation**: Full greenscreen when humans not detected
|
||||||
|
- **Flexible Processing**: Can enable/disable per pipeline
|
||||||
|
- **Better Debug Visibility**: Eye-specific debug outputs
|
||||||
|
- **Performance Scalability**: Smaller frames = faster processing per eye
|
||||||
|
|
||||||
|
This plan maintains full backward compatibility while adding the requested separate eye processing capability with robust fallback mechanisms.
|
||||||
122
test-separate-eyes-config.yaml
Normal file
122
test-separate-eyes-config.yaml
Normal file
@@ -0,0 +1,122 @@
|
|||||||
|
# YOLO + SAM2 Video Processing Configuration with VR180 Separate Eye Processing
|
||||||
|
|
||||||
|
input:
|
||||||
|
video_path: "./input/regrets_full.mp4"
|
||||||
|
|
||||||
|
output:
|
||||||
|
directory: "./output/"
|
||||||
|
filename: "vr180_processed_both_eyes.mp4"
|
||||||
|
|
||||||
|
processing:
|
||||||
|
# Duration of each video segment in seconds
|
||||||
|
segment_duration: 5
|
||||||
|
|
||||||
|
# Scale factor for SAM2 inference (0.5 = half resolution)
|
||||||
|
inference_scale: 0.4
|
||||||
|
|
||||||
|
# YOLO detection confidence threshold (lowered for better VR180 detection)
|
||||||
|
yolo_confidence: 0.4
|
||||||
|
|
||||||
|
# Which segments to run YOLO detection on
|
||||||
|
detect_segments: "all"
|
||||||
|
|
||||||
|
# VR180 separate eye processing mode (ENABLED FOR TESTING)
|
||||||
|
separate_eye_processing: false
|
||||||
|
|
||||||
|
# Enable full greenscreen fallback when no humans detected
|
||||||
|
# A value of 0.5 means masks must overlap by 50% to be considered a pair.
|
||||||
|
stereo_iou_threshold: 0.5
|
||||||
|
|
||||||
|
# Factor to reduce YOLO confidence by if no stereo pairs are found on the first try (e.g., 0.8 = 20% reduction).
|
||||||
|
confidence_reduction_factor: 0.8
|
||||||
|
|
||||||
|
# If no humans are detected in a segment, create a full green screen video.
|
||||||
|
# Only used when separate_eye_processing is true.
|
||||||
|
enable_greenscreen_fallback: true
|
||||||
|
|
||||||
|
# Pixel overlap between left/right eyes for blending (0 = no overlap)
|
||||||
|
eye_overlap_pixels: 0
|
||||||
|
|
||||||
|
models:
|
||||||
|
# YOLO detection mode: "detection" (bounding boxes) or "segmentation" (direct masks)
|
||||||
|
yolo_mode: "segmentation" # Default: existing behavior, Options: "detection", "segmentation"
|
||||||
|
|
||||||
|
# YOLO model paths for different modes
|
||||||
|
yolo_detection_model: "models/yolo/yolo11l.pt" # Regular YOLO for detection mode
|
||||||
|
yolo_segmentation_model: "models/yolo/yolo11x-seg.pt" # Segmentation YOLO for segmentation mode
|
||||||
|
|
||||||
|
# SAM2 model configuration
|
||||||
|
sam2_checkpoint: "models/sam2/checkpoints/sam2.1_hiera_small.pt"
|
||||||
|
sam2_config: "models/sam2/configs/sam2.1/sam2.1_hiera_s.yaml"
|
||||||
|
|
||||||
|
video:
|
||||||
|
# Use NVIDIA hardware encoding (requires NVENC-capable GPU)
|
||||||
|
use_nvenc: true
|
||||||
|
|
||||||
|
# Output video bitrate
|
||||||
|
output_bitrate: "25M"
|
||||||
|
|
||||||
|
# Preserve original audio track
|
||||||
|
preserve_audio: true
|
||||||
|
|
||||||
|
# Force keyframes for better segment boundaries
|
||||||
|
force_keyframes: true
|
||||||
|
|
||||||
|
advanced:
|
||||||
|
# Green screen color (RGB values)
|
||||||
|
green_color: [0, 255, 0]
|
||||||
|
|
||||||
|
# Blue screen color for second object (RGB values)
|
||||||
|
blue_color: [255, 0, 0]
|
||||||
|
|
||||||
|
# YOLO human class ID (0 for COCO person class)
|
||||||
|
human_class_id: 0
|
||||||
|
|
||||||
|
# GPU memory management
|
||||||
|
cleanup_intermediate_files: true
|
||||||
|
|
||||||
|
# Logging level (DEBUG, INFO, WARNING, ERROR)
|
||||||
|
log_level: "INFO"
|
||||||
|
|
||||||
|
# Save debug frames with YOLO detections visualized (ENABLED FOR TESTING)
|
||||||
|
save_yolo_debug_frames: true
|
||||||
|
|
||||||
|
# --- Mid-Segment Re-detection ---
|
||||||
|
# Re-run YOLO at intervals within a segment to correct tracking drift.
|
||||||
|
enable_mid_segment_detection: false
|
||||||
|
redetection_interval: 30 # Frames between re-detections.
|
||||||
|
max_redetections_per_segment: 10
|
||||||
|
|
||||||
|
|
||||||
|
# Parallel Processing Optimizations
|
||||||
|
enable_background_lowres_generation: false # Enable async low-res video pre-generation (temporarily disabled due to syntax fix needed)
|
||||||
|
max_concurrent_lowres: 2 # Max parallel FFmpeg processes for low-res creation
|
||||||
|
lowres_segments_ahead: 2 # How many segments to prepare in advance
|
||||||
|
use_ffmpeg_lowres: true # Use FFmpeg instead of OpenCV for low-res creation
|
||||||
|
|
||||||
|
# Mask Quality Enhancement Settings - Optimized for Performance
|
||||||
|
mask_processing:
|
||||||
|
# Edge feathering and blurring (REDUCED for performance)
|
||||||
|
enable_edge_blur: true # Enable Gaussian blur on mask edges for smooth transitions
|
||||||
|
edge_blur_radius: 3 # Reduced from 10 to 3 for better performance
|
||||||
|
edge_blur_sigma: 0.5 # Gaussian blur standard deviation
|
||||||
|
|
||||||
|
# Temporal smoothing between frames
|
||||||
|
enable_temporal_smoothing: false # Enable frame-to-frame mask blending
|
||||||
|
temporal_blend_weight: 0.2 # Weight for previous frame (0.0-1.0, higher = more smoothing)
|
||||||
|
temporal_history_frames: 2 # Number of previous frames to consider
|
||||||
|
|
||||||
|
# Morphological mask cleaning (DISABLED for VR180 - SAM2 masks are already high quality)
|
||||||
|
enable_morphological_cleaning: false # Disabled for performance - SAM2 produces clean masks
|
||||||
|
morphology_kernel_size: 5 # Kernel size for opening/closing operations
|
||||||
|
min_component_size: 500 # Minimum pixel area for connected components
|
||||||
|
|
||||||
|
# Alpha blending mode (OPTIMIZED)
|
||||||
|
alpha_blending_mode: "linear" # Linear is fastest - keep as-is
|
||||||
|
alpha_transition_width: 1 # Width of transition zone in pixels
|
||||||
|
|
||||||
|
# Advanced options
|
||||||
|
enable_bilateral_filter: false # Edge-preserving smoothing (slower but higher quality)
|
||||||
|
bilateral_d: 9 # Bilateral filter diameter
|
||||||
|
bilateral_sigma_color: 75 # Bilateral filter color sigma
|
||||||
|
bilateral_sigma_space: 75 # Bilateral filter space sigma
|
||||||
Reference in New Issue
Block a user