stage 1 working
This commit is contained in:
58
README.md
58
README.md
@@ -32,19 +32,40 @@ git clone <repository-url>
|
|||||||
cd samyolo_on_segments
|
cd samyolo_on_segments
|
||||||
|
|
||||||
# Install Python dependencies
|
# Install Python dependencies
|
||||||
pip install -r requirements.txt
|
uv venv && source .venv/bin/activate
|
||||||
|
uv pip install -r requirements.txt
|
||||||
```
|
```
|
||||||
|
|
||||||
### Model Dependencies
|
### Download Models
|
||||||
|
|
||||||
You'll need to download the required model checkpoints:
|
Use the provided script to automatically download all required models:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Download SAM2.1 and YOLO models
|
||||||
|
python download_models.py
|
||||||
|
```
|
||||||
|
|
||||||
|
This script will:
|
||||||
|
- Create a `models/` directory structure
|
||||||
|
- Download SAM2.1 configs and checkpoints (tiny, small, base+, large)
|
||||||
|
- Download common YOLO models (yolov8n, yolov8s, yolov8m)
|
||||||
|
- Update `config.yaml` to use local model paths
|
||||||
|
|
||||||
|
**Manual Download (Alternative):**
|
||||||
1. **SAM2 Models**: Download from [Meta's SAM2 repository](https://github.com/facebookresearch/sam2)
|
1. **SAM2 Models**: Download from [Meta's SAM2 repository](https://github.com/facebookresearch/sam2)
|
||||||
2. **YOLO Models**: YOLOv8 models will be downloaded automatically or you can specify a custom path
|
2. **YOLO Models**: YOLOv8 models will be downloaded automatically on first use
|
||||||
|
|
||||||
## Quick Start
|
## Quick Start
|
||||||
|
|
||||||
### 1. Configure the Pipeline
|
### 1. Download Models
|
||||||
|
|
||||||
|
First, download the required SAM2.1 and YOLO models:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python download_models.py
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. Configure the Pipeline
|
||||||
|
|
||||||
Edit `config.yaml` to specify your input video and desired settings:
|
Edit `config.yaml` to specify your input video and desired settings:
|
||||||
|
|
||||||
@@ -63,18 +84,18 @@ processing:
|
|||||||
detect_segments: "all"
|
detect_segments: "all"
|
||||||
|
|
||||||
models:
|
models:
|
||||||
yolo_model: "yolov8n.pt"
|
yolo_model: "models/yolo/yolov8n.pt"
|
||||||
sam2_checkpoint: "../checkpoints/sam2.1_hiera_large.pt"
|
sam2_checkpoint: "models/sam2/checkpoints/sam2.1_hiera_large.pt"
|
||||||
sam2_config: "configs/sam2.1/sam2.1_hiera_l.yaml"
|
sam2_config: "models/sam2/configs/sam2.1/sam2.1_hiera_l.yaml"
|
||||||
```
|
```
|
||||||
|
|
||||||
### 2. Run the Pipeline
|
### 3. Run the Pipeline
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
python main.py --config config.yaml
|
python main.py --config config.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
### 3. Monitor Progress
|
### 4. Monitor Progress
|
||||||
|
|
||||||
Check processing status:
|
Check processing status:
|
||||||
```bash
|
```bash
|
||||||
@@ -166,8 +187,25 @@ samyolo_on_segments/
|
|||||||
├── README.md # This documentation
|
├── README.md # This documentation
|
||||||
├── config.yaml # Default configuration
|
├── config.yaml # Default configuration
|
||||||
├── main.py # Main entry point
|
├── main.py # Main entry point
|
||||||
|
├── download_models.py # Model download script
|
||||||
├── requirements.txt # Python dependencies
|
├── requirements.txt # Python dependencies
|
||||||
├── spec.md # Detailed specification
|
├── spec.md # Detailed specification
|
||||||
|
├── models/ # Downloaded models (created by script)
|
||||||
|
│ ├── sam2/
|
||||||
|
│ │ ├── configs/sam2.1/ # SAM2.1 configuration files
|
||||||
|
│ │ │ ├── sam2.1_hiera_t.yaml
|
||||||
|
│ │ │ ├── sam2.1_hiera_s.yaml
|
||||||
|
│ │ │ ├── sam2.1_hiera_b+.yaml
|
||||||
|
│ │ │ └── sam2.1_hiera_l.yaml
|
||||||
|
│ │ └── checkpoints/ # SAM2.1 model weights
|
||||||
|
│ │ ├── sam2.1_hiera_tiny.pt
|
||||||
|
│ │ ├── sam2.1_hiera_small.pt
|
||||||
|
│ │ ├── sam2.1_hiera_base_plus.pt
|
||||||
|
│ │ └── sam2.1_hiera_large.pt
|
||||||
|
│ └── yolo/ # YOLO model weights
|
||||||
|
│ ├── yolov8n.pt
|
||||||
|
│ ├── yolov8s.pt
|
||||||
|
│ └── yolov8m.pt
|
||||||
├── core/ # Core processing modules
|
├── core/ # Core processing modules
|
||||||
│ ├── __init__.py
|
│ ├── __init__.py
|
||||||
│ ├── config_loader.py # Configuration management
|
│ ├── config_loader.py # Configuration management
|
||||||
|
|||||||
@@ -23,11 +23,11 @@ processing:
|
|||||||
|
|
||||||
models:
|
models:
|
||||||
# YOLO model path - can be pretrained (yolov8n.pt) or custom path
|
# YOLO model path - can be pretrained (yolov8n.pt) or custom path
|
||||||
yolo_model: "yolov8n.pt"
|
yolo_model: "models/yolo/yolov8n.pt"
|
||||||
|
|
||||||
# SAM2 model configuration
|
# SAM2 model configuration
|
||||||
sam2_checkpoint: "../checkpoints/sam2.1_hiera_large.pt"
|
sam2_checkpoint: "models/sam2/checkpoints/sam2.1_hiera_large.pt"
|
||||||
sam2_config: "configs/sam2.1/sam2.1_hiera_l.yaml"
|
sam2_config: "models/sam2/configs/sam2.1/sam2.1_hiera_l.yaml"
|
||||||
|
|
||||||
video:
|
video:
|
||||||
# Use NVIDIA hardware encoding (requires NVENC-capable GPU)
|
# Use NVIDIA hardware encoding (requires NVENC-capable GPU)
|
||||||
|
|||||||
@@ -7,7 +7,7 @@ import os
|
|||||||
import subprocess
|
import subprocess
|
||||||
import logging
|
import logging
|
||||||
from typing import List, Tuple
|
from typing import List, Tuple
|
||||||
from ..utils.file_utils import ensure_directory, get_video_file_name
|
from utils.file_utils import ensure_directory, get_video_file_name
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|||||||
@@ -13,17 +13,17 @@ from ultralytics import YOLO
|
|||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
class YOLODetector:
|
class YOLODetector:
|
||||||
\"\"\"Handles YOLO-based human detection for video segments.\"\"\"
|
"""Handles YOLO-based human detection for video segments."""
|
||||||
|
|
||||||
def __init__(self, model_path: str, confidence_threshold: float = 0.6, human_class_id: int = 0):
|
def __init__(self, model_path: str, confidence_threshold: float = 0.6, human_class_id: int = 0):
|
||||||
\"\"\"
|
"""
|
||||||
Initialize YOLO detector.
|
Initialize YOLO detector.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
model_path: Path to YOLO model weights
|
model_path: Path to YOLO model weights
|
||||||
confidence_threshold: Detection confidence threshold
|
confidence_threshold: Detection confidence threshold
|
||||||
human_class_id: COCO class ID for humans (0 = person)
|
human_class_id: COCO class ID for humans (0 = person)
|
||||||
\"\"\"
|
"""
|
||||||
self.model_path = model_path
|
self.model_path = model_path
|
||||||
self.confidence_threshold = confidence_threshold
|
self.confidence_threshold = confidence_threshold
|
||||||
self.human_class_id = human_class_id
|
self.human_class_id = human_class_id
|
||||||
@@ -31,13 +31,13 @@ class YOLODetector:
|
|||||||
# Load YOLO model
|
# Load YOLO model
|
||||||
try:
|
try:
|
||||||
self.model = YOLO(model_path)
|
self.model = YOLO(model_path)
|
||||||
logger.info(f\"Loaded YOLO model from {model_path}\")
|
logger.info(f"Loaded YOLO model from {model_path}")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f\"Failed to load YOLO model: {e}\")
|
logger.error(f"Failed to load YOLO model: {e}")
|
||||||
raise
|
raise
|
||||||
|
|
||||||
def detect_humans_in_frame(self, frame: np.ndarray) -> List[Dict[str, Any]]:
|
def detect_humans_in_frame(self, frame: np.ndarray) -> List[Dict[str, Any]]:
|
||||||
\"\"\"
|
"""
|
||||||
Detect humans in a single frame using YOLO.
|
Detect humans in a single frame using YOLO.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@@ -45,7 +45,7 @@ class YOLODetector:
|
|||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
List of human detection dictionaries with bbox and confidence
|
List of human detection dictionaries with bbox and confidence
|
||||||
\"\"\"
|
"""
|
||||||
# Run YOLO detection
|
# Run YOLO detection
|
||||||
results = self.model(frame, conf=self.confidence_threshold, verbose=False)
|
results = self.model(frame, conf=self.confidence_threshold, verbose=False)
|
||||||
|
|
||||||
@@ -70,12 +70,12 @@ class YOLODetector:
|
|||||||
'confidence': conf
|
'confidence': conf
|
||||||
})
|
})
|
||||||
|
|
||||||
logger.debug(f\"Detected human with confidence {conf:.2f} at {coords}\")
|
logger.debug(f"Detected human with confidence {conf:.2f} at {coords}")
|
||||||
|
|
||||||
return human_detections
|
return human_detections
|
||||||
|
|
||||||
def detect_humans_in_video_first_frame(self, video_path: str, scale: float = 1.0) -> List[Dict[str, Any]]:
|
def detect_humans_in_video_first_frame(self, video_path: str, scale: float = 1.0) -> List[Dict[str, Any]]:
|
||||||
\"\"\"
|
"""
|
||||||
Detect humans in the first frame of a video.
|
Detect humans in the first frame of a video.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@@ -84,21 +84,21 @@ class YOLODetector:
|
|||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
List of human detection dictionaries
|
List of human detection dictionaries
|
||||||
\"\"\"
|
"""
|
||||||
if not os.path.exists(video_path):
|
if not os.path.exists(video_path):
|
||||||
logger.error(f\"Video file not found: {video_path}\")
|
logger.error(f"Video file not found: {video_path}")
|
||||||
return []
|
return []
|
||||||
|
|
||||||
cap = cv2.VideoCapture(video_path)
|
cap = cv2.VideoCapture(video_path)
|
||||||
if not cap.isOpened():
|
if not cap.isOpened():
|
||||||
logger.error(f\"Could not open video: {video_path}\")
|
logger.error(f"Could not open video: {video_path}")
|
||||||
return []
|
return []
|
||||||
|
|
||||||
ret, frame = cap.read()
|
ret, frame = cap.read()
|
||||||
cap.release()
|
cap.release()
|
||||||
|
|
||||||
if not ret:
|
if not ret:
|
||||||
logger.error(f\"Could not read first frame from: {video_path}\")
|
logger.error(f"Could not read first frame from: {video_path}")
|
||||||
return []
|
return []
|
||||||
|
|
||||||
# Scale frame if needed
|
# Scale frame if needed
|
||||||
@@ -108,7 +108,7 @@ class YOLODetector:
|
|||||||
return self.detect_humans_in_frame(frame)
|
return self.detect_humans_in_frame(frame)
|
||||||
|
|
||||||
def save_detections_to_file(self, detections: List[Dict[str, Any]], output_path: str) -> bool:
|
def save_detections_to_file(self, detections: List[Dict[str, Any]], output_path: str) -> bool:
|
||||||
\"\"\"
|
"""
|
||||||
Save detection results to file.
|
Save detection results to file.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@@ -117,26 +117,26 @@ class YOLODetector:
|
|||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
True if saved successfully
|
True if saved successfully
|
||||||
\"\"\"
|
"""
|
||||||
try:
|
try:
|
||||||
with open(output_path, 'w') as f:
|
with open(output_path, 'w') as f:
|
||||||
f.write(\"# YOLO Human Detections\\n\")
|
f.write("# YOLO Human Detections\\n")
|
||||||
if detections:
|
if detections:
|
||||||
for detection in detections:
|
for detection in detections:
|
||||||
bbox = detection['bbox']
|
bbox = detection['bbox']
|
||||||
conf = detection['confidence']
|
conf = detection['confidence']
|
||||||
f.write(f\"{bbox[0]},{bbox[1]},{bbox[2]},{bbox[3]},{conf}\\n\")
|
f.write(f"{bbox[0]},{bbox[1]},{bbox[2]},{bbox[3]},{conf}\\n")
|
||||||
logger.info(f\"Saved {len(detections)} detections to {output_path}\")
|
logger.info(f"Saved {len(detections)} detections to {output_path}")
|
||||||
else:
|
else:
|
||||||
f.write(\"# No humans detected\\n\")
|
f.write("# No humans detected\\n")
|
||||||
logger.info(f\"Saved empty detection file to {output_path}\")
|
logger.info(f"Saved empty detection file to {output_path}")
|
||||||
return True
|
return True
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f\"Failed to save detections to {output_path}: {e}\")
|
logger.error(f"Failed to save detections to {output_path}: {e}")
|
||||||
return False
|
return False
|
||||||
|
|
||||||
def load_detections_from_file(self, file_path: str) -> List[Dict[str, Any]]:
|
def load_detections_from_file(self, file_path: str) -> List[Dict[str, Any]]:
|
||||||
\"\"\"
|
"""
|
||||||
Load detection results from file.
|
Load detection results from file.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@@ -144,11 +144,11 @@ class YOLODetector:
|
|||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
List of detection dictionaries
|
List of detection dictionaries
|
||||||
\"\"\"
|
"""
|
||||||
detections = []
|
detections = []
|
||||||
|
|
||||||
if not os.path.exists(file_path):
|
if not os.path.exists(file_path):
|
||||||
logger.warning(f\"Detection file not found: {file_path}\")
|
logger.warning(f"Detection file not found: {file_path}")
|
||||||
return detections
|
return detections
|
||||||
|
|
||||||
try:
|
try:
|
||||||
@@ -170,18 +170,18 @@ class YOLODetector:
|
|||||||
'confidence': conf
|
'confidence': conf
|
||||||
})
|
})
|
||||||
except ValueError:
|
except ValueError:
|
||||||
logger.warning(f\"Invalid detection line: {line}\")
|
logger.warning(f"Invalid detection line: {line}")
|
||||||
continue
|
continue
|
||||||
|
|
||||||
logger.info(f\"Loaded {len(detections)} detections from {file_path}\")
|
logger.info(f"Loaded {len(detections)} detections from {file_path}")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f\"Failed to load detections from {file_path}: {e}\")
|
logger.error(f"Failed to load detections from {file_path}: {e}")
|
||||||
|
|
||||||
return detections
|
return detections
|
||||||
|
|
||||||
def process_segments_batch(self, segments_info: List[dict], detect_segments: List[int],
|
def process_segments_batch(self, segments_info: List[dict], detect_segments: List[int],
|
||||||
scale: float = 0.5) -> Dict[int, List[Dict[str, Any]]]:
|
scale: float = 0.5) -> Dict[int, List[Dict[str, Any]]]:
|
||||||
\"\"\"
|
"""
|
||||||
Process multiple segments for human detection.
|
Process multiple segments for human detection.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@@ -191,7 +191,7 @@ class YOLODetector:
|
|||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Dictionary mapping segment index to detection results
|
Dictionary mapping segment index to detection results
|
||||||
\"\"\"
|
"""
|
||||||
results = {}
|
results = {}
|
||||||
|
|
||||||
for segment_info in segments_info:
|
for segment_info in segments_info:
|
||||||
@@ -202,17 +202,17 @@ class YOLODetector:
|
|||||||
continue
|
continue
|
||||||
|
|
||||||
video_path = segment_info['video_file']
|
video_path = segment_info['video_file']
|
||||||
detection_file = os.path.join(segment_info['directory'], \"yolo_detections\")
|
detection_file = os.path.join(segment_info['directory'], "yolo_detections")
|
||||||
|
|
||||||
# Skip if already processed
|
# Skip if already processed
|
||||||
if os.path.exists(detection_file):
|
if os.path.exists(detection_file):
|
||||||
logger.info(f\"Segment {segment_idx} already has detections, skipping\")
|
logger.info(f"Segment {segment_idx} already has detections, skipping")
|
||||||
detections = self.load_detections_from_file(detection_file)
|
detections = self.load_detections_from_file(detection_file)
|
||||||
results[segment_idx] = detections
|
results[segment_idx] = detections
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# Run detection
|
# Run detection
|
||||||
logger.info(f\"Processing segment {segment_idx} for human detection\")
|
logger.info(f"Processing segment {segment_idx} for human detection")
|
||||||
detections = self.detect_humans_in_video_first_frame(video_path, scale)
|
detections = self.detect_humans_in_video_first_frame(video_path, scale)
|
||||||
|
|
||||||
# Save results
|
# Save results
|
||||||
@@ -223,7 +223,7 @@ class YOLODetector:
|
|||||||
|
|
||||||
def convert_detections_to_sam2_prompts(self, detections: List[Dict[str, Any]],
|
def convert_detections_to_sam2_prompts(self, detections: List[Dict[str, Any]],
|
||||||
frame_width: int) -> List[Dict[str, Any]]:
|
frame_width: int) -> List[Dict[str, Any]]:
|
||||||
\"\"\"
|
"""
|
||||||
Convert YOLO detections to SAM2-compatible prompts for stereo video.
|
Convert YOLO detections to SAM2-compatible prompts for stereo video.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@@ -232,7 +232,7 @@ class YOLODetector:
|
|||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
List of SAM2 prompt dictionaries with obj_id and bbox
|
List of SAM2 prompt dictionaries with obj_id and bbox
|
||||||
\"\"\"
|
"""
|
||||||
if not detections:
|
if not detections:
|
||||||
return []
|
return []
|
||||||
|
|
||||||
@@ -282,5 +282,5 @@ class YOLODetector:
|
|||||||
'confidence': detection['confidence']
|
'confidence': detection['confidence']
|
||||||
})
|
})
|
||||||
|
|
||||||
logger.debug(f\"Converted {len(detections)} detections to {len(prompts)} SAM2 prompts\")
|
logger.debug(f"Converted {len(detections)} detections to {len(prompts)} SAM2 prompts")
|
||||||
return prompts
|
return prompts
|
||||||
286
download_models.py
Executable file
286
download_models.py
Executable file
@@ -0,0 +1,286 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
"""
|
||||||
|
Model download script for YOLO + SAM2 video processing pipeline.
|
||||||
|
Downloads SAM2.1 models and organizes them in the models directory.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import urllib.request
|
||||||
|
import urllib.error
|
||||||
|
from pathlib import Path
|
||||||
|
import sys
|
||||||
|
|
||||||
|
def create_directory_structure():
|
||||||
|
"""Create the models directory structure."""
|
||||||
|
base_dir = Path(__file__).parent
|
||||||
|
models_dir = base_dir / "models"
|
||||||
|
|
||||||
|
# Create main models directory
|
||||||
|
models_dir.mkdir(exist_ok=True)
|
||||||
|
|
||||||
|
# Create subdirectories
|
||||||
|
sam2_dir = models_dir / "sam2"
|
||||||
|
sam2_configs_dir = sam2_dir / "configs" / "sam2.1"
|
||||||
|
sam2_checkpoints_dir = sam2_dir / "checkpoints"
|
||||||
|
yolo_dir = models_dir / "yolo"
|
||||||
|
|
||||||
|
sam2_dir.mkdir(exist_ok=True)
|
||||||
|
sam2_configs_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
sam2_checkpoints_dir.mkdir(exist_ok=True)
|
||||||
|
yolo_dir.mkdir(exist_ok=True)
|
||||||
|
|
||||||
|
print(f"Created models directory structure in: {models_dir}")
|
||||||
|
return models_dir, sam2_configs_dir, sam2_checkpoints_dir, yolo_dir
|
||||||
|
|
||||||
|
def download_file(url, destination, description="file"):
|
||||||
|
"""Download a file with progress indication."""
|
||||||
|
try:
|
||||||
|
print(f"Downloading {description}...")
|
||||||
|
print(f" URL: {url}")
|
||||||
|
print(f" Destination: {destination}")
|
||||||
|
|
||||||
|
def progress_hook(block_num, block_size, total_size):
|
||||||
|
if total_size > 0:
|
||||||
|
percent = min(100, (block_num * block_size * 100) // total_size)
|
||||||
|
sys.stdout.write(f"\r Progress: {percent}%")
|
||||||
|
sys.stdout.flush()
|
||||||
|
|
||||||
|
urllib.request.urlretrieve(url, destination, progress_hook)
|
||||||
|
print(f"\n ✓ Downloaded {description}")
|
||||||
|
return True
|
||||||
|
|
||||||
|
except urllib.error.URLError as e:
|
||||||
|
print(f"\n ✗ Failed to download {description}: {e}")
|
||||||
|
return False
|
||||||
|
except Exception as e:
|
||||||
|
print(f"\n ✗ Error downloading {description}: {e}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
def download_sam2_models():
|
||||||
|
"""Download SAM2.1 model configurations and checkpoints."""
|
||||||
|
print("Setting up SAM2.1 models...")
|
||||||
|
|
||||||
|
# Create directory structure
|
||||||
|
models_dir, configs_dir, checkpoints_dir, yolo_dir = create_directory_structure()
|
||||||
|
|
||||||
|
# SAM2.1 model definitions
|
||||||
|
sam2_models = {
|
||||||
|
"tiny": {
|
||||||
|
"config_url": "https://raw.githubusercontent.com/facebookresearch/sam2/main/sam2/configs/sam2.1/sam2.1_hiera_t.yaml",
|
||||||
|
"checkpoint_url": "https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_tiny.pt",
|
||||||
|
"config_file": "sam2.1_hiera_t.yaml",
|
||||||
|
"checkpoint_file": "sam2.1_hiera_tiny.pt"
|
||||||
|
},
|
||||||
|
"small": {
|
||||||
|
"config_url": "https://raw.githubusercontent.com/facebookresearch/sam2/main/sam2/configs/sam2.1/sam2.1_hiera_s.yaml",
|
||||||
|
"checkpoint_url": "https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_small.pt",
|
||||||
|
"config_file": "sam2.1_hiera_s.yaml",
|
||||||
|
"checkpoint_file": "sam2.1_hiera_small.pt"
|
||||||
|
},
|
||||||
|
"base_plus": {
|
||||||
|
"config_url": "https://raw.githubusercontent.com/facebookresearch/sam2/main/sam2/configs/sam2.1/sam2.1_hiera_b+.yaml",
|
||||||
|
"checkpoint_url": "https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_base_plus.pt",
|
||||||
|
"config_file": "sam2.1_hiera_b+.yaml",
|
||||||
|
"checkpoint_file": "sam2.1_hiera_base_plus.pt"
|
||||||
|
},
|
||||||
|
"large": {
|
||||||
|
"config_url": "https://raw.githubusercontent.com/facebookresearch/sam2/main/sam2/configs/sam2.1/sam2.1_hiera_l.yaml",
|
||||||
|
"checkpoint_url": "https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_large.pt",
|
||||||
|
"config_file": "sam2.1_hiera_l.yaml",
|
||||||
|
"checkpoint_file": "sam2.1_hiera_large.pt"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
success_count = 0
|
||||||
|
total_downloads = len(sam2_models) * 2 # configs + checkpoints
|
||||||
|
|
||||||
|
# Download each model's config and checkpoint
|
||||||
|
for model_name, model_info in sam2_models.items():
|
||||||
|
print(f"\n--- Downloading SAM2.1 {model_name.upper()} model ---")
|
||||||
|
|
||||||
|
# Download config file
|
||||||
|
config_path = configs_dir / model_info["config_file"]
|
||||||
|
if not config_path.exists():
|
||||||
|
if download_file(
|
||||||
|
model_info["config_url"],
|
||||||
|
config_path,
|
||||||
|
f"SAM2.1 {model_name} config"
|
||||||
|
):
|
||||||
|
success_count += 1
|
||||||
|
else:
|
||||||
|
print(f" ✓ Config file already exists: {config_path}")
|
||||||
|
success_count += 1
|
||||||
|
|
||||||
|
# Download checkpoint file
|
||||||
|
checkpoint_path = checkpoints_dir / model_info["checkpoint_file"]
|
||||||
|
if not checkpoint_path.exists():
|
||||||
|
if download_file(
|
||||||
|
model_info["checkpoint_url"],
|
||||||
|
checkpoint_path,
|
||||||
|
f"SAM2.1 {model_name} checkpoint"
|
||||||
|
):
|
||||||
|
success_count += 1
|
||||||
|
else:
|
||||||
|
print(f" ✓ Checkpoint file already exists: {checkpoint_path}")
|
||||||
|
success_count += 1
|
||||||
|
|
||||||
|
print(f"\n=== Download Summary ===")
|
||||||
|
print(f"Successfully downloaded: {success_count}/{total_downloads} files")
|
||||||
|
|
||||||
|
if success_count == total_downloads:
|
||||||
|
print("✓ All SAM2.1 models downloaded successfully!")
|
||||||
|
return True
|
||||||
|
else:
|
||||||
|
print(f"⚠ Some downloads failed ({total_downloads - success_count} files)")
|
||||||
|
return False
|
||||||
|
|
||||||
|
def download_yolo_models():
|
||||||
|
"""Download default YOLO models to models directory."""
|
||||||
|
print("\n--- Setting up YOLO models ---")
|
||||||
|
|
||||||
|
try:
|
||||||
|
from ultralytics import YOLO
|
||||||
|
import torch
|
||||||
|
|
||||||
|
# Default YOLO models to download
|
||||||
|
yolo_models = ["yolov8n.pt", "yolov8s.pt", "yolov8m.pt"]
|
||||||
|
models_dir = Path(__file__).parent / "models" / "yolo"
|
||||||
|
|
||||||
|
for model_name in yolo_models:
|
||||||
|
model_path = models_dir / model_name
|
||||||
|
if not model_path.exists():
|
||||||
|
print(f"Downloading {model_name}...")
|
||||||
|
try:
|
||||||
|
# First try to download using the YOLO class with export
|
||||||
|
model = YOLO(model_name)
|
||||||
|
|
||||||
|
# Export/save the model to our directory
|
||||||
|
# The model.ckpt is the internal checkpoint
|
||||||
|
if hasattr(model, 'ckpt') and hasattr(model.ckpt, 'save'):
|
||||||
|
# Save the checkpoint directly
|
||||||
|
torch.save(model.ckpt, str(model_path))
|
||||||
|
print(f" ✓ Saved {model_name} to models directory")
|
||||||
|
else:
|
||||||
|
# Alternative: try to find where YOLO downloaded the model
|
||||||
|
import shutil
|
||||||
|
|
||||||
|
# Common locations where YOLO might store models
|
||||||
|
possible_paths = [
|
||||||
|
Path.home() / ".cache" / "ultralytics" / "models" / model_name,
|
||||||
|
Path.home() / ".ultralytics" / "models" / model_name,
|
||||||
|
Path.home() / "runs" / "detect" / model_name,
|
||||||
|
Path.cwd() / model_name, # Current directory
|
||||||
|
]
|
||||||
|
|
||||||
|
found = False
|
||||||
|
for possible_path in possible_paths:
|
||||||
|
if possible_path.exists():
|
||||||
|
shutil.copy2(possible_path, model_path)
|
||||||
|
print(f" ✓ Copied {model_name} from {possible_path}")
|
||||||
|
found = True
|
||||||
|
# Clean up if it was downloaded to current directory
|
||||||
|
if possible_path.parent == Path.cwd() and possible_path != model_path:
|
||||||
|
possible_path.unlink()
|
||||||
|
break
|
||||||
|
|
||||||
|
if not found:
|
||||||
|
# Last resort: use urllib to download directly
|
||||||
|
yolo_url = f"https://github.com/ultralytics/assets/releases/download/v8.2.0/{model_name}"
|
||||||
|
print(f" Downloading directly from {yolo_url}...")
|
||||||
|
download_file(yolo_url, str(model_path), f"YOLO {model_name}")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f" ⚠ Error downloading {model_name}: {e}")
|
||||||
|
# Try direct download as fallback
|
||||||
|
try:
|
||||||
|
yolo_url = f"https://github.com/ultralytics/assets/releases/download/v8.2.0/{model_name}"
|
||||||
|
print(f" Trying direct download from {yolo_url}...")
|
||||||
|
download_file(yolo_url, str(model_path), f"YOLO {model_name}")
|
||||||
|
except Exception as e2:
|
||||||
|
print(f" ✗ Failed to download {model_name}: {e2}")
|
||||||
|
else:
|
||||||
|
print(f" ✓ {model_name} already exists")
|
||||||
|
|
||||||
|
# Verify all models exist
|
||||||
|
success = all((models_dir / model).exists() for model in yolo_models)
|
||||||
|
if success:
|
||||||
|
print("✓ YOLO models setup complete!")
|
||||||
|
else:
|
||||||
|
print("⚠ Some YOLO models may be missing")
|
||||||
|
return success
|
||||||
|
|
||||||
|
except ImportError:
|
||||||
|
print("⚠ ultralytics not installed. YOLO models will be downloaded on first use.")
|
||||||
|
return False
|
||||||
|
except Exception as e:
|
||||||
|
print(f"⚠ Error setting up YOLO models: {e}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
def update_config_file():
|
||||||
|
"""Update config.yaml to use local model paths."""
|
||||||
|
print("\n--- Updating config.yaml ---")
|
||||||
|
|
||||||
|
config_path = Path(__file__).parent / "config.yaml"
|
||||||
|
if not config_path.exists():
|
||||||
|
print("⚠ config.yaml not found, skipping update")
|
||||||
|
return False
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Read current config
|
||||||
|
with open(config_path, 'r') as f:
|
||||||
|
content = f.read()
|
||||||
|
|
||||||
|
# Update model paths to use local models
|
||||||
|
updated_content = content.replace(
|
||||||
|
'yolo_model: "yolov8n.pt"',
|
||||||
|
'yolo_model: "models/yolo/yolov8n.pt"'
|
||||||
|
).replace(
|
||||||
|
'sam2_checkpoint: "../checkpoints/sam2.1_hiera_large.pt"',
|
||||||
|
'sam2_checkpoint: "models/sam2/checkpoints/sam2.1_hiera_large.pt"'
|
||||||
|
).replace(
|
||||||
|
'sam2_config: "configs/sam2.1/sam2.1_hiera_l.yaml"',
|
||||||
|
'sam2_config: "models/sam2/configs/sam2.1/sam2.1_hiera_l.yaml"'
|
||||||
|
)
|
||||||
|
|
||||||
|
# Write updated config
|
||||||
|
with open(config_path, 'w') as f:
|
||||||
|
f.write(updated_content)
|
||||||
|
|
||||||
|
print("✓ Updated config.yaml to use local model paths")
|
||||||
|
return True
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"⚠ Error updating config.yaml: {e}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
def main():
|
||||||
|
"""Main function to download all models."""
|
||||||
|
print("🤖 YOLO + SAM2 Model Download Script")
|
||||||
|
print("="*50)
|
||||||
|
|
||||||
|
# Download SAM2 models
|
||||||
|
sam2_success = download_sam2_models()
|
||||||
|
|
||||||
|
# Download YOLO models
|
||||||
|
yolo_success = download_yolo_models()
|
||||||
|
|
||||||
|
# Update config file
|
||||||
|
config_success = update_config_file()
|
||||||
|
|
||||||
|
print("\n" + "="*50)
|
||||||
|
print("📋 Final Summary:")
|
||||||
|
print(f" SAM2 models: {'✓' if sam2_success else '⚠'}")
|
||||||
|
print(f" YOLO models: {'✓' if yolo_success else '⚠'}")
|
||||||
|
print(f" Config update: {'✓' if config_success else '⚠'}")
|
||||||
|
|
||||||
|
if sam2_success and config_success:
|
||||||
|
print("\n🎉 Setup complete! You can now run the pipeline with:")
|
||||||
|
print(" python main.py --config config.yaml")
|
||||||
|
else:
|
||||||
|
print("\n⚠ Some steps failed. Check the output above for details.")
|
||||||
|
|
||||||
|
print("\n📁 Models are organized in:")
|
||||||
|
print(f" {Path(__file__).parent / 'models'}")
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
618
spec.md
618
spec.md
@@ -190,3 +190,621 @@ models:
|
|||||||
- **Fine-tuned YOLO**: Domain-specific human detection models
|
- **Fine-tuned YOLO**: Domain-specific human detection models
|
||||||
- **SAM2 Optimization**: Custom SAM2 checkpoints for video content
|
- **SAM2 Optimization**: Custom SAM2 checkpoints for video content
|
||||||
- **Temporal Consistency**: Enhanced cross-segment mask propagation
|
- **Temporal Consistency**: Enhanced cross-segment mask propagation
|
||||||
|
|
||||||
|
|
||||||
|
Here is the original monolithic script this repo is a refactor/modularization of. If something
|
||||||
|
doesn't work in this repo, then consult the following script becasue it does work so this can
|
||||||
|
be used to solve problems:
|
||||||
|
|
||||||
|
|
||||||
|
import os
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
import cupy as cp
|
||||||
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
|
import torch
|
||||||
|
import logging
|
||||||
|
import sys
|
||||||
|
import gc
|
||||||
|
from sam2.build_sam import build_sam2_video_predictor
|
||||||
|
import argparse
|
||||||
|
from ultralytics import YOLO
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
logging.basicConfig(level=logging.INFO)
|
||||||
|
|
||||||
|
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
||||||
|
|
||||||
|
# Variables for input and output directories
|
||||||
|
SAM2_CHECKPOINT = "../checkpoints/sam2.1_hiera_large.pt"
|
||||||
|
MODEL_CFG = "configs/sam2.1/sam2.1_hiera_l.yaml"
|
||||||
|
GREEN = [0, 255, 0]
|
||||||
|
BLUE = [255, 0, 0]
|
||||||
|
|
||||||
|
INFERENCE_SCALE = 0.50
|
||||||
|
FULL_SCALE = 1.0
|
||||||
|
|
||||||
|
# YOLO model for human detection (class 0 = person)
|
||||||
|
YOLO_MODEL_PATH = "yolov8n.pt" # You can change this to a custom model
|
||||||
|
YOLO_CONFIDENCE = 0.6
|
||||||
|
HUMAN_CLASS_ID = 0 # COCO class ID for person
|
||||||
|
|
||||||
|
def open_video(video_path):
|
||||||
|
"""
|
||||||
|
Opens a video file and returns a generator that yields frames.
|
||||||
|
|
||||||
|
Parameters:
|
||||||
|
- video_path: Path to the video file.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
- A generator that yields frames from the video.
|
||||||
|
"""
|
||||||
|
cap = cv2.VideoCapture(video_path)
|
||||||
|
if not cap.isOpened():
|
||||||
|
print(f"Error: Could not open video file {video_path}")
|
||||||
|
return
|
||||||
|
while True:
|
||||||
|
ret, frame = cap.read()
|
||||||
|
if not ret:
|
||||||
|
break
|
||||||
|
yield frame
|
||||||
|
cap.release()
|
||||||
|
|
||||||
|
def load_previous_segment_mask(prev_segment_dir):
|
||||||
|
mask_path = os.path.join(prev_segment_dir, "mask.png")
|
||||||
|
mask_image = cv2.imread(mask_path)
|
||||||
|
|
||||||
|
if mask_image is None:
|
||||||
|
raise FileNotFoundError(f"Mask image not found at {mask_path}")
|
||||||
|
|
||||||
|
# Ensure the mask_image has three color channels
|
||||||
|
if len(mask_image.shape) != 3 or mask_image.shape[2] != 3:
|
||||||
|
raise ValueError("Mask image does not have three color channels.")
|
||||||
|
|
||||||
|
mask_image = mask_image.astype(np.uint8)
|
||||||
|
|
||||||
|
# Extract Object A and Object B masks
|
||||||
|
mask_a = np.all(mask_image == GREEN, axis=2)
|
||||||
|
mask_b = np.all(mask_image == BLUE, axis=2)
|
||||||
|
|
||||||
|
per_obj_input_mask = {1: mask_a, 2: mask_b}
|
||||||
|
input_palette = None # No palette needed for binary mask
|
||||||
|
|
||||||
|
return per_obj_input_mask, input_palette
|
||||||
|
|
||||||
|
|
||||||
|
def apply_green_mask(frame, masks):
|
||||||
|
# Convert frame and masks to CuPy arrays
|
||||||
|
frame_gpu = cp.asarray(frame)
|
||||||
|
combined_mask = cp.zeros(frame_gpu.shape[:2], dtype=cp.bool_)
|
||||||
|
|
||||||
|
for mask in masks:
|
||||||
|
mask_gpu = cp.asarray(mask.squeeze())
|
||||||
|
if mask_gpu.shape != frame_gpu.shape[:2]:
|
||||||
|
resized_mask = cv2.resize(cp.asnumpy(mask_gpu).astype(cp.float32),
|
||||||
|
(frame_gpu.shape[1], frame_gpu.shape[0]))
|
||||||
|
mask_gpu = cp.asarray(resized_mask > 0.5) # Convert back to CuPy boolean array
|
||||||
|
else:
|
||||||
|
mask_gpu = mask_gpu.astype(cp.bool_) # Ensure boolean type
|
||||||
|
combined_mask |= mask_gpu # Perform the bitwise OR operation
|
||||||
|
|
||||||
|
green_background = cp.full(frame_gpu.shape, cp.array([0, 255, 0], dtype=cp.uint8), dtype=cp.uint8)
|
||||||
|
result_frame = cp.where(combined_mask[..., None], frame_gpu, green_background)
|
||||||
|
return cp.asnumpy(result_frame) # Convert back to NumPy
|
||||||
|
|
||||||
|
|
||||||
|
def initialize_predictor():
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda")
|
||||||
|
elif torch.backends.mps.is_available():
|
||||||
|
device = torch.device("mps")
|
||||||
|
print(
|
||||||
|
"\nSupport for MPS devices is preliminary. SAM 2 is trained with CUDA and might "
|
||||||
|
"give numerically different outputs and sometimes degraded performance on MPS."
|
||||||
|
)
|
||||||
|
# Enable MPS fallback for operations not supported on MPS
|
||||||
|
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
||||||
|
else:
|
||||||
|
device = torch.device("cpu")
|
||||||
|
logger.info(f"Using device: {device}")
|
||||||
|
predictor = build_sam2_video_predictor(MODEL_CFG, SAM2_CHECKPOINT, device=device)
|
||||||
|
return predictor
|
||||||
|
|
||||||
|
|
||||||
|
def load_first_frame(video_path, scale=1.0):
|
||||||
|
"""
|
||||||
|
Opens a video file and returns the first frame, scaled as specified.
|
||||||
|
|
||||||
|
Parameters:
|
||||||
|
- video_path: Path to the video file.
|
||||||
|
- scale: Scaling factor for the frame (default is 1.0 for original size).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
- first_frame: The first frame of the video, scaled accordingly.
|
||||||
|
"""
|
||||||
|
cap = cv2.VideoCapture(video_path)
|
||||||
|
if not cap.isOpened():
|
||||||
|
logger.error(f"Error: Could not open video file {video_path}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
ret, frame = cap.read()
|
||||||
|
cap.release()
|
||||||
|
|
||||||
|
if not ret:
|
||||||
|
logger.error(f"Error: Could not read frame from video file {video_path}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
if scale != 1.0:
|
||||||
|
frame = cv2.resize(
|
||||||
|
frame, None, fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR
|
||||||
|
)
|
||||||
|
|
||||||
|
return frame
|
||||||
|
|
||||||
|
def detect_humans_with_yolo(frame, yolo_model, confidence_threshold=YOLO_CONFIDENCE):
|
||||||
|
"""
|
||||||
|
Detect humans in a frame using YOLO model.
|
||||||
|
|
||||||
|
Parameters:
|
||||||
|
- frame: Input frame (BGR format)
|
||||||
|
- yolo_model: Loaded YOLO model
|
||||||
|
- confidence_threshold: Detection confidence threshold
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
- human_boxes: List of bounding boxes for detected humans
|
||||||
|
"""
|
||||||
|
# Run YOLO detection
|
||||||
|
results = yolo_model(frame, conf=confidence_threshold, verbose=False)
|
||||||
|
|
||||||
|
human_boxes = []
|
||||||
|
|
||||||
|
# Process results
|
||||||
|
for result in results:
|
||||||
|
boxes = result.boxes
|
||||||
|
if boxes is not None:
|
||||||
|
for box in boxes:
|
||||||
|
# Get class ID
|
||||||
|
cls = int(box.cls.cpu().numpy()[0])
|
||||||
|
|
||||||
|
# Check if it's a person (class 0 in COCO)
|
||||||
|
if cls == HUMAN_CLASS_ID:
|
||||||
|
# Get bounding box coordinates (x1, y1, x2, y2)
|
||||||
|
coords = box.xyxy[0].cpu().numpy()
|
||||||
|
conf = float(box.conf.cpu().numpy()[0])
|
||||||
|
|
||||||
|
human_boxes.append({
|
||||||
|
'bbox': coords,
|
||||||
|
'confidence': conf
|
||||||
|
})
|
||||||
|
|
||||||
|
logger.info(f"Detected human with confidence {conf:.2f} at {coords}")
|
||||||
|
|
||||||
|
return human_boxes
|
||||||
|
|
||||||
|
def add_yolo_detections_to_predictor(predictor, inference_state, human_detections, frame_width):
|
||||||
|
"""
|
||||||
|
Add YOLO human detections as bounding boxes to SAM2 predictor.
|
||||||
|
For stereo videos, creates two objects (left and right humans).
|
||||||
|
|
||||||
|
Parameters:
|
||||||
|
- predictor: SAM2 video predictor
|
||||||
|
- inference_state: SAM2 inference state
|
||||||
|
- human_detections: List of human detection results
|
||||||
|
- frame_width: Width of the frame for stereo splitting
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
- out_mask_logits: SAM2 output mask logits
|
||||||
|
"""
|
||||||
|
half_frame_width = frame_width // 2
|
||||||
|
|
||||||
|
# Sort detections by x-coordinate to get left and right humans
|
||||||
|
human_detections.sort(key=lambda x: x['bbox'][0]) # Sort by x1 coordinate
|
||||||
|
|
||||||
|
obj_id = 1
|
||||||
|
out_mask_logits = None
|
||||||
|
|
||||||
|
for i, detection in enumerate(human_detections[:2]): # Take up to 2 humans (left and right)
|
||||||
|
bbox = detection['bbox']
|
||||||
|
|
||||||
|
# For stereo videos, assign obj_id based on position
|
||||||
|
if len(human_detections) >= 2:
|
||||||
|
# If we have multiple humans, assign based on left/right position
|
||||||
|
center_x = (bbox[0] + bbox[2]) / 2
|
||||||
|
if center_x < half_frame_width:
|
||||||
|
current_obj_id = 1 # Left human
|
||||||
|
else:
|
||||||
|
current_obj_id = 2 # Right human
|
||||||
|
else:
|
||||||
|
# If only one human, duplicate for both sides (as in original stereo logic)
|
||||||
|
current_obj_id = obj_id
|
||||||
|
obj_id += 1
|
||||||
|
|
||||||
|
# Also add the mirrored version for stereo
|
||||||
|
if obj_id <= 2:
|
||||||
|
mirrored_bbox = bbox.copy()
|
||||||
|
mirrored_bbox[0] += half_frame_width # Shift x1
|
||||||
|
mirrored_bbox[2] += half_frame_width # Shift x2
|
||||||
|
|
||||||
|
# Ensure mirrored bbox is within frame bounds
|
||||||
|
mirrored_bbox[0] = max(0, min(mirrored_bbox[0], frame_width - 1))
|
||||||
|
mirrored_bbox[2] = max(0, min(mirrored_bbox[2], frame_width - 1))
|
||||||
|
|
||||||
|
try:
|
||||||
|
_, out_obj_ids, out_mask_logits = predictor.add_new_points_or_box(
|
||||||
|
inference_state=inference_state,
|
||||||
|
frame_idx=0,
|
||||||
|
obj_id=obj_id,
|
||||||
|
box=mirrored_bbox.astype(np.float32),
|
||||||
|
)
|
||||||
|
logger.info(f"Added mirrored human detection for Object {obj_id}")
|
||||||
|
obj_id += 1
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error adding mirrored human detection for Object {obj_id}: {e}")
|
||||||
|
|
||||||
|
try:
|
||||||
|
_, out_obj_ids, out_mask_logits = predictor.add_new_points_or_box(
|
||||||
|
inference_state=inference_state,
|
||||||
|
frame_idx=0,
|
||||||
|
obj_id=current_obj_id,
|
||||||
|
box=bbox.astype(np.float32),
|
||||||
|
)
|
||||||
|
logger.info(f"Added human detection for Object {current_obj_id}")
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error adding human detection for Object {current_obj_id}: {e}")
|
||||||
|
|
||||||
|
return out_mask_logits
|
||||||
|
|
||||||
|
def propagate_masks(predictor, inference_state):
|
||||||
|
video_segments = {}
|
||||||
|
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state):
|
||||||
|
video_segments[out_frame_idx] = {
|
||||||
|
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
|
||||||
|
for i, out_obj_id in enumerate(out_obj_ids)
|
||||||
|
}
|
||||||
|
return video_segments
|
||||||
|
|
||||||
|
def apply_colored_mask(frame, masks_a, masks_b):
|
||||||
|
colored_mask = np.zeros_like(frame)
|
||||||
|
|
||||||
|
# Apply colors to the masks
|
||||||
|
for mask in masks_a:
|
||||||
|
mask = mask.squeeze()
|
||||||
|
if mask.shape != frame.shape[:2]:
|
||||||
|
mask = cv2.resize(mask, (frame.shape[1], frame.shape[0]), interpolation=cv2.INTER_NEAREST)
|
||||||
|
indices = np.where(mask)
|
||||||
|
colored_mask[mask] = [0, 255, 0] # Green for Object A
|
||||||
|
|
||||||
|
for mask in masks_b:
|
||||||
|
mask = mask.squeeze()
|
||||||
|
if mask.shape != frame.shape[:2]:
|
||||||
|
mask = cv2.resize(mask, (frame.shape[1], frame.shape[0]), interpolation=cv2.INTER_NEAREST)
|
||||||
|
indices = np.where(mask)
|
||||||
|
colored_mask[mask] = [255, 0, 0] # Blue for Object B
|
||||||
|
|
||||||
|
return colored_mask
|
||||||
|
|
||||||
|
|
||||||
|
def process_and_save_output_video(video_path, output_video_path, video_segments, use_nvenc=False):
|
||||||
|
"""
|
||||||
|
Process high-resolution frames, apply upscaled masks, and save the output video.
|
||||||
|
"""
|
||||||
|
cap = cv2.VideoCapture(video_path)
|
||||||
|
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||||
|
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||||
|
fps = cap.get(cv2.CAP_PROP_FPS) or 59.94
|
||||||
|
|
||||||
|
# Setup VideoWriter with desired settings
|
||||||
|
if use_nvenc:
|
||||||
|
# Use FFmpeg with NVENC offloading for H.265 encoding
|
||||||
|
import subprocess
|
||||||
|
|
||||||
|
if sys.platform == 'darwin':
|
||||||
|
encoder = 'hevc_videotoolbox'
|
||||||
|
else:
|
||||||
|
encoder = 'hevc_nvenc'
|
||||||
|
|
||||||
|
command = [
|
||||||
|
'ffmpeg',
|
||||||
|
'-y', # Overwrite output file if it exists
|
||||||
|
'-f', 'rawvideo',
|
||||||
|
'-vcodec', 'rawvideo',
|
||||||
|
'-pix_fmt', 'bgr24',
|
||||||
|
'-s', f'{frame_width}x{frame_height}',
|
||||||
|
'-r', str(fps),
|
||||||
|
'-i', '-', # Input from stdin
|
||||||
|
'-an', # No audio
|
||||||
|
'-vcodec', encoder,
|
||||||
|
'-pix_fmt', 'nv12',
|
||||||
|
'-preset', 'slow',
|
||||||
|
'-b:v', '50M',
|
||||||
|
output_video_path
|
||||||
|
]
|
||||||
|
process = subprocess.Popen(command, stdin=subprocess.PIPE)
|
||||||
|
else:
|
||||||
|
# Use OpenCV VideoWriter
|
||||||
|
fourcc = cv2.VideoWriter_fourcc(*'HEVC') # H.265
|
||||||
|
out = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height))
|
||||||
|
|
||||||
|
frame_idx = 0
|
||||||
|
while True:
|
||||||
|
ret, frame = cap.read()
|
||||||
|
if not ret or frame_idx >= len(video_segments):
|
||||||
|
break
|
||||||
|
|
||||||
|
masks = [video_segments[frame_idx][out_obj_id] for out_obj_id in video_segments[frame_idx]]
|
||||||
|
upscaled_masks = []
|
||||||
|
|
||||||
|
for mask in masks:
|
||||||
|
mask = mask.squeeze()
|
||||||
|
upscaled_mask = cv2.resize(mask.astype(np.uint8), (frame.shape[1], frame.shape[0]), interpolation=cv2.INTER_NEAREST)
|
||||||
|
upscaled_masks.append(upscaled_mask)
|
||||||
|
|
||||||
|
result_frame = apply_green_mask(frame, upscaled_masks)
|
||||||
|
|
||||||
|
# Write frame to output
|
||||||
|
if use_nvenc:
|
||||||
|
process.stdin.write(result_frame.tobytes())
|
||||||
|
else:
|
||||||
|
out.write(result_frame)
|
||||||
|
|
||||||
|
frame_idx += 1
|
||||||
|
|
||||||
|
cap.release()
|
||||||
|
if use_nvenc:
|
||||||
|
process.stdin.close()
|
||||||
|
process.wait()
|
||||||
|
else:
|
||||||
|
out.release()
|
||||||
|
|
||||||
|
def get_video_file_name(index):
|
||||||
|
return f"segment_{str(index).zfill(3)}.mp4"
|
||||||
|
|
||||||
|
def do_yolo_detection_on_segments(base_dir, segments, detect_segments, scale=1.0, yolo_model_path=YOLO_MODEL_PATH):
|
||||||
|
"""
|
||||||
|
Run YOLO detection on specified segments and save detection results.
|
||||||
|
"""
|
||||||
|
logger.info("Running YOLO detection on requested segments.")
|
||||||
|
|
||||||
|
# Load YOLO model
|
||||||
|
yolo_model = YOLO(yolo_model_path)
|
||||||
|
|
||||||
|
for i, segment in enumerate(segments):
|
||||||
|
segment_index = int(segment.split("_")[1])
|
||||||
|
segment_dir = os.path.join(base_dir, segment)
|
||||||
|
detection_file = os.path.join(segment_dir, "yolo_detections")
|
||||||
|
video_file = os.path.join(segment_dir, get_video_file_name(i))
|
||||||
|
|
||||||
|
if segment_index in detect_segments and not os.path.exists(detection_file):
|
||||||
|
first_frame = load_first_frame(video_file, scale)
|
||||||
|
if first_frame is None:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Convert BGR to RGB for YOLO (YOLO expects BGR, so keep as BGR)
|
||||||
|
human_detections = detect_humans_with_yolo(first_frame, yolo_model)
|
||||||
|
|
||||||
|
if human_detections:
|
||||||
|
# Save detection results
|
||||||
|
with open(detection_file, 'w') as f:
|
||||||
|
f.write("# YOLO Human Detections\n")
|
||||||
|
for detection in human_detections:
|
||||||
|
bbox = detection['bbox']
|
||||||
|
conf = detection['confidence']
|
||||||
|
f.write(f"{bbox[0]},{bbox[1]},{bbox[2]},{bbox[3]},{conf}\n")
|
||||||
|
logger.info(f"Saved {len(human_detections)} human detections for segment {segment}")
|
||||||
|
else:
|
||||||
|
logger.warning(f"No humans detected in segment {segment}")
|
||||||
|
# Create empty file to mark as processed
|
||||||
|
with open(detection_file, 'w') as f:
|
||||||
|
f.write("# No humans detected\n")
|
||||||
|
|
||||||
|
def save_final_masks(video_segments, mask_output_path):
|
||||||
|
"""
|
||||||
|
Save the final masks as a colored image.
|
||||||
|
"""
|
||||||
|
last_frame_idx = max(video_segments.keys())
|
||||||
|
masks_dict = video_segments[last_frame_idx]
|
||||||
|
# Assuming you have two objects with IDs 1 and 2
|
||||||
|
mask_a = masks_dict.get(1).squeeze() if 1 in masks_dict else None
|
||||||
|
mask_b = masks_dict.get(2).squeeze() if 2 in masks_dict else None
|
||||||
|
|
||||||
|
if mask_a is None and mask_b is None:
|
||||||
|
logger.error("No masks found for objects.")
|
||||||
|
return
|
||||||
|
|
||||||
|
# Use the first available mask to determine dimensions
|
||||||
|
reference_mask = mask_a if mask_a is not None else mask_b
|
||||||
|
black_frame = np.zeros((reference_mask.shape[0], reference_mask.shape[1], 3), dtype=np.uint8)
|
||||||
|
|
||||||
|
if mask_a is not None:
|
||||||
|
mask_a = mask_a.astype(bool)
|
||||||
|
black_frame[mask_a] = GREEN
|
||||||
|
|
||||||
|
if mask_b is not None:
|
||||||
|
mask_b = mask_b.astype(bool)
|
||||||
|
black_frame[mask_b] = BLUE
|
||||||
|
|
||||||
|
# Save the mask image
|
||||||
|
cv2.imwrite(mask_output_path, black_frame)
|
||||||
|
logger.info(f"Saved final masks to {mask_output_path}")
|
||||||
|
|
||||||
|
def create_low_res_video(input_video_path, output_video_path, scale):
|
||||||
|
"""
|
||||||
|
Creates a low-resolution version of the input video for inference.
|
||||||
|
"""
|
||||||
|
cap = cv2.VideoCapture(input_video_path)
|
||||||
|
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH) * scale)
|
||||||
|
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT) * scale)
|
||||||
|
fps = cap.get(cv2.CAP_PROP_FPS) or 59.94
|
||||||
|
|
||||||
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
||||||
|
out = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height))
|
||||||
|
|
||||||
|
while True:
|
||||||
|
ret, frame = cap.read()
|
||||||
|
if not ret:
|
||||||
|
break
|
||||||
|
low_res_frame = cv2.resize(frame, (frame_width, frame_height), interpolation=cv2.INTER_LINEAR)
|
||||||
|
out.write(low_res_frame)
|
||||||
|
|
||||||
|
cap.release()
|
||||||
|
out.release()
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = argparse.ArgumentParser(description="Process video segments with YOLO + SAM2.")
|
||||||
|
parser.add_argument("--base-dir", type=str, help="Base directory for video segments.")
|
||||||
|
parser.add_argument("--segments-detect-humans", nargs='*', help="Segments for which to run YOLO human detection. Use 'all' for all segments, or list specific segment numbers (e.g., 1 5 10). Default: all segments.")
|
||||||
|
parser.add_argument("--yolo-model", type=str, default=YOLO_MODEL_PATH, help="Path to YOLO model.")
|
||||||
|
parser.add_argument("--yolo-confidence", type=float, default=YOLO_CONFIDENCE, help="YOLO detection confidence threshold.")
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
base_dir = args.base_dir
|
||||||
|
segments = [d for d in os.listdir(base_dir) if os.path.isdir(os.path.join(base_dir, d)) and d.startswith("segment_")]
|
||||||
|
segments.sort(key=lambda x: int(x.split("_")[1]))
|
||||||
|
|
||||||
|
# Handle different ways to specify segments for YOLO detection
|
||||||
|
if args.segments_detect_humans is None or len(args.segments_detect_humans) == 0:
|
||||||
|
# Default: run YOLO on all segments
|
||||||
|
detect_segments = [int(seg.split("_")[1]) for seg in segments]
|
||||||
|
logger.info("No segments specified, running YOLO detection on ALL segments")
|
||||||
|
elif len(args.segments_detect_humans) == 1 and args.segments_detect_humans[0].lower() == 'all':
|
||||||
|
# Explicit 'all' keyword
|
||||||
|
detect_segments = [int(seg.split("_")[1]) for seg in segments]
|
||||||
|
logger.info("Running YOLO detection on ALL segments")
|
||||||
|
else:
|
||||||
|
# Specific segment numbers provided
|
||||||
|
try:
|
||||||
|
detect_segments = [int(x) for x in args.segments_detect_humans]
|
||||||
|
logger.info(f"Running YOLO detection on segments: {detect_segments}")
|
||||||
|
except ValueError:
|
||||||
|
logger.error("Invalid segment numbers provided. Use integers or 'all'.")
|
||||||
|
return
|
||||||
|
|
||||||
|
# Run YOLO detection on specified segments
|
||||||
|
do_yolo_detection_on_segments(base_dir, segments, detect_segments, scale=INFERENCE_SCALE, yolo_model_path=args.yolo_model)
|
||||||
|
|
||||||
|
# Load YOLO model for inference
|
||||||
|
yolo_model = YOLO(args.yolo_model)
|
||||||
|
|
||||||
|
for i, segment in enumerate(segments):
|
||||||
|
segment_index = int(segment.split("_")[1])
|
||||||
|
segment_dir = os.path.join(base_dir, segment)
|
||||||
|
video_file_name = get_video_file_name(i)
|
||||||
|
video_path = os.path.join(segment_dir, video_file_name)
|
||||||
|
output_done_file = os.path.join(segment_dir, "output_frames_done")
|
||||||
|
|
||||||
|
if os.path.exists(output_done_file):
|
||||||
|
logger.info(f"Segment {segment} already processed. Skipping.")
|
||||||
|
continue
|
||||||
|
|
||||||
|
logger.info(f"Processing segment {segment}")
|
||||||
|
|
||||||
|
# Initialize predictor
|
||||||
|
predictor = initialize_predictor()
|
||||||
|
|
||||||
|
# Prepare low-resolution video frames for inference
|
||||||
|
low_res_video_path = os.path.join(segment_dir, "low_res_video.mp4")
|
||||||
|
if not os.path.exists(low_res_video_path):
|
||||||
|
create_low_res_video(video_path, low_res_video_path, INFERENCE_SCALE)
|
||||||
|
logger.info(f"Low-resolution video created for segment {segment}")
|
||||||
|
else:
|
||||||
|
logger.info(f"Low-resolution video already exists for segment {segment}, reuse")
|
||||||
|
|
||||||
|
# Initialize inference state with low-resolution video
|
||||||
|
inference_state = predictor.init_state(video_path=low_res_video_path, async_loading_frames=True)
|
||||||
|
|
||||||
|
# Load YOLO detections or previous masks
|
||||||
|
detection_file = os.path.join(segment_dir, "yolo_detections")
|
||||||
|
use_detections = segment_index in detect_segments
|
||||||
|
|
||||||
|
if i == 0 and not use_detections:
|
||||||
|
# First segment must use YOLO detection since there's no previous mask
|
||||||
|
logger.warning(f"First segment {segment} requires YOLO detection. Running YOLO detection.")
|
||||||
|
use_detections = True
|
||||||
|
|
||||||
|
if i > 0 and not use_detections:
|
||||||
|
# Try to load previous segment mask - search backwards for the most recent successful mask
|
||||||
|
logger.info(f"Using previous segment mask for segment {segment}")
|
||||||
|
mask_found = False
|
||||||
|
|
||||||
|
# Search backwards through previous segments to find a valid mask
|
||||||
|
for j in range(i - 1, -1, -1):
|
||||||
|
prev_segment_dir = os.path.join(base_dir, segments[j])
|
||||||
|
prev_mask_path = os.path.join(prev_segment_dir, "mask.png")
|
||||||
|
|
||||||
|
if os.path.exists(prev_mask_path):
|
||||||
|
try:
|
||||||
|
per_obj_input_mask, input_palette = load_previous_segment_mask(prev_segment_dir)
|
||||||
|
# Add previous masks to predictor
|
||||||
|
for obj_id, mask in per_obj_input_mask.items():
|
||||||
|
predictor.add_new_mask(inference_state, 0, obj_id, mask)
|
||||||
|
logger.info(f"Successfully loaded mask from segment {segments[j]}")
|
||||||
|
mask_found = True
|
||||||
|
break
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Error loading mask from {segments[j]}: {e}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
if not mask_found:
|
||||||
|
logger.error(f"No valid previous mask found for segment {segment}. Consider running YOLO detection on this segment.")
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
# Load first frame for detection
|
||||||
|
first_frame = load_first_frame(low_res_video_path, scale=1.0)
|
||||||
|
if first_frame is None:
|
||||||
|
logger.error(f"Could not load first frame for segment {segment}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Run YOLO detection on first frame (either from file or on-the-fly)
|
||||||
|
if os.path.exists(detection_file):
|
||||||
|
logger.info(f"Using existing YOLO detections for segment {segment}")
|
||||||
|
else:
|
||||||
|
logger.info(f"Running YOLO detection on-the-fly for segment {segment}")
|
||||||
|
|
||||||
|
human_detections = detect_humans_with_yolo(first_frame, yolo_model, args.yolo_confidence)
|
||||||
|
|
||||||
|
if human_detections:
|
||||||
|
# Add YOLO detections to predictor
|
||||||
|
frame_width = first_frame.shape[1]
|
||||||
|
add_yolo_detections_to_predictor(predictor, inference_state, human_detections, frame_width)
|
||||||
|
else:
|
||||||
|
logger.warning(f"No humans detected in segment {segment}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Perform inference and collect masks per frame
|
||||||
|
video_segments = propagate_masks(predictor, inference_state)
|
||||||
|
|
||||||
|
# Process high-resolution frames and save output video
|
||||||
|
output_video_path = os.path.join(segment_dir, f"output_{segment_index}.mp4")
|
||||||
|
logger.info("Processing segment complete, attempting to save full video from low res masks")
|
||||||
|
process_and_save_output_video(
|
||||||
|
video_path,
|
||||||
|
output_video_path,
|
||||||
|
video_segments,
|
||||||
|
use_nvenc=True # Set to True to use NVENC offloading
|
||||||
|
)
|
||||||
|
|
||||||
|
# Save final masks
|
||||||
|
mask_output_path = os.path.join(segment_dir, "mask.png")
|
||||||
|
save_final_masks(video_segments, mask_output_path)
|
||||||
|
|
||||||
|
# Clean up
|
||||||
|
predictor.reset_state(inference_state)
|
||||||
|
del inference_state
|
||||||
|
del video_segments
|
||||||
|
del predictor
|
||||||
|
gc.collect()
|
||||||
|
|
||||||
|
try:
|
||||||
|
os.remove(low_res_video_path)
|
||||||
|
logger.info(f"Deleted low-resolution video for segment {segment}")
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Could not delete low-resolution video for segment {segment}: {e}")
|
||||||
|
|
||||||
|
# Mark segment as completed
|
||||||
|
open(output_done_file, 'a').close()
|
||||||
|
|
||||||
|
logger.info("Processing complete.")
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
|
|||||||
Reference in New Issue
Block a user